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Abstract: The primary factors to be managed in the design of heat sinks include enhancing the heat dissipation rate, minimizing occupied 
volume and mass, and eliminating lower heat transfer areas behind the pin fins. This study focuses on numerically analysing the impact  
of combining perforation technique and ring inserts on the heat dissipation and turbulent fluid flow characteristics of pin fin heat sinks.  
The rings are positioned around the cylindrical pin fins (CPFs). The perforation technique allows fluid flow to pass through the pin fins (PFs) 
and agitate the stagnant zones of flow behind PFs. These configurations are denoted as case 0 (no perforation) to case 4. Results show that 
fitted with rings and perforation (case 4), as an optimal configuration, demonstrates a 180.82% increase in Nusselt number and a 154.54% 
decrease in thermal resistance compared to CPFs. Fortunately, this configuration contributes to a significant decrease in the pressure drop 
by 62.19%. Furthermore, under the same conditions, the occupied volume and mass of case 4 are reduced by 77.5% and 77.65%,  
respectively. Additionally, the optimal configuration exhibits the highest hydrothermal performance factor (η) of 3.29 at Re = 8740. 

Key words: Heat sink; heat dissipation; perforated space; pin fins; ring

1. INTRODUCTION 

In recent years, there has been a trend in electronic devices 
towards higher frequencies and smaller sizes, resulting in a signifi-
cant increase in power density. This has led to chip-level heat dis-
sipation exceeding 1000 W/cm2 for compound semiconductor de-
vices (1). The elevated temperatures resulting from inadequate 
heat dissipation pose a significant challenge to device reliability, 
and improper thermal management can result in complete device 
failure. It is empirically observed that for every 10 degrees Celsius 
reduction in the temperature of electronic components, the failure 
rate is halved (2). Therefore, in order to achieve optimal perfor-
mance, electronic devices must be equipped with advanced cooling 
technologies that offer enhanced heat dissipation capabilities to im-
prove cooling efficiency and maintain the device at an appropriate 
temperature level to ensure proper system functionality (3,4). A 
heat sink is an important component that fixed on heated electronic 
devices to cool them. Through conductive and convective heat 
transfer, heat sink effectively dissipates generated heat by elec-
tronic devices(5).  

There are several fluids used for cooling electronic systems, 
such as nanofluids (6–10), hybrid nanofluids (11–15) and phase 
change materials (PCM) (16–19). However, the latter fluids still 
pose economic costs and technological challenges. Usually utilized 
air-cooling technologies are becoming inadequate in meeting the 
cooling requirements of modern high-power small-sized devices. 
Air is free, available in nature, does not pose any technical prob-
lems to electronic devices, such as leaks(20,21).  

Vortex generators (VGs)(22,23), perforation (24,25) and split-
ters insert (26,27) have become efficient strategies that  

are favored techniques of cooling by air. Alam et al (28) tested heat 
transfer characteristics of PFHS by using triangular vortex genera-
tor mounted on heat sink of central processing unit (CPU).They 
showed that Nusselt number (Nu) increases with increasing of air 
velocity which is enhances the thermal performance of CPU. In this 
context, the wavy way of channel heat sinks can also enhance heat 
dissipation rates by developing of the flow structure (29). 

Bezaatpour and Goharkhah (30) analyzed the impact of porous 
media on the performance of two conventional pin fins heat sink 
(circular and rectangular). They used Fe3O4 nanofluid as a working 
fluid. In the presence of porous media, the two cases showed an 
increase in Nusset number by 450% and 547%.Chin et al (31) nu-
merically and experimentally studied the effect of number (N) and 
diameter (DP) of perforation on heat transfer and fluid flow behav-
iors of CPFHSs. They reported that N=5 and DP=3mm offer the 
best performance by an increase in Nusselt number by 45% com-
pared to the conventional pin fins (CPFs). 

Sajedi et al (32) numerically studied the effect of splitters on the 
performance of PFHS. They showed that splitters insert behind the 
cylindrical pin fins (CPFs) reduces pressure drop by 13.4 %, ther-
mal resistances decrease by 36.8 %. In addition, they reported that 
splitters can reduces the formation of flow recirculation zones be-
hind CPFs. Abdemohimen et al (33) analyzed the influence of split-
ters with different deviation angles which are varied from 0° to 90° 
than the flow direction. For staggered arrangements of CPFs, the 
angle of 22.5° achieved better hydro thermal performance factor. 
In this context, several papers were confirmed that the perforation 
technique not only enhance heat transfer coefficient by its also re-
duce pressure drops in different shapes of heat sinks (34,35). Me-
ganathan et al(36) reported that the best design of heat sinks con-
sists to consider some geometric parameters such as the height, 
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length, the thickness, the number of the fins and the material of the 
construction. Haque et al (37) analyzed different shapes of perfo-
ration and budges for create better mixture of flow. The studies are 
conducted using a CFD program for Reynolds numbers (Re) varing 
from 8547 to 21,367. They indicate that elliptical pin fins signifi-
cantly improve the hydro-thermal performance factor (HTPF). 

Specifically, the circular perforated elliptical pin fin achieves a 
peak HTPF of 1.72 as the Re varies from 8547 to 21,367.  

This study proposes a new design that integrates perforation 

through CPFHSs fitted with rings located around CPFs. In this new 
design, perforation and rings were combined in different configura-
tions. Rings augments heat transfer surface, where the perforation 
technique helps also augments heat transfer area, reduces mass 
of heat sink and develop the flow structure behind the pin fins. The 
simulation was carried out using Comsol Multiphysics v.5.4 soft-
ware to model turbulent fluid flow and heat transfer within the heat 
sinks. 
 

 

Fig. 1. General illustration and dimensions (in mm) of air flow channel heat sink 
 

 
 

   

a) CPFs b) Case 0 c) Case 1 

   

d) Case 2 e)  Case 3 f) Case 4 

 
Fig. 2. Detailed dimensions (in mm) of different heat sink configurations 
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2. NUMERICAL METHODOLOGY 

2.1. Physical model 

A set of three-dimensional Computational Fluid Dynamics 
(CFD) simulations were conducted to study the hydro-thermal effi-
ciency of different pin-fin heat sinks (PFHSs), as illustrated in Fig-
ures 1 and 2. These PFHSs consist of a base plate with fins ar-
ranged in a staggered manner, placed within a channel as depicted 
in Fig. 1. The dimensions of the base plate are 75⨯75⨯2 mm3 and 
of the channel are 215⨯75⨯20 mm3. Both the base plate and fins 
were constructed from A8350P aluminum. The staggered cylindri-
cal pin fin (CPFs) heat sink from a previous study was used as a 
benchmark to validate the methodology employed in this research. 
Combination between ring and perforation techniques was ana-
lyzed parametrically under fully turbulent flow conditions using 
three-dimensional CFD simulations. This combination was results 
fives cases named as: case 0, case 1, case 2, case 3, case 4.  Sim-
ulation was realized for Reynolds number (Re) ranging from 8740 
to 22,060. The longitudinal and transversal distances of the pins 
are set to 15 mm. all dimensions of channel and heat sinks were 
illustrated in Figs.1 and 2. 

2.2. Governing formulation and boundary conditions 

 The fluid flow state is considered to be turbulent flow with sin-
gle-phase characteristics. In the context of fluid-solid conjugate 
heat transfer in channel heat sinks, several assumptions are em-
ployed to simplify the numerical calculation process as: 
− Both air flow and heat transfer are assumed to be in steady 

states.  
− The air is treated as single-phase, Newtonian and incompress-

ible.  
− Radiation heat transfer is neglected. 
− The influence of gravity is ignored.  
− The thermo-physical properties of the fluid are assumed to be 

constants.  
− No-slip conditions are assumed at the solid-fluid interface.  

These assumptions lead to the formulation of control equations 
appropriate for the analysis of steady states fluid flow and heat 
transfer (38) (39), which includes the continuity equation, momen-
tum equation, energy equation, and conduction energy equation 
(27) . 

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0                      (1)                                                                                                         

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖𝑢𝑗) =

𝜕

𝜌 𝑥𝑖
[𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝜌𝑢𝑖

′𝑢𝑗
′)] −

𝜕𝑝

𝜕𝑥𝑖
               (2) 

𝜕(𝑢𝑗𝑇)

𝜕𝑥𝑗
= 𝛼𝛻2𝑇 +

𝜕

𝜕𝑥𝑗
(−𝑢𝑖

′𝜃)            (3) 

𝛻. (𝜆𝑠𝛻𝑇𝑠) = 0             (4) 

Where, λs is the thermal conductivity of A8350P Aluminum 
(167 W/m. K), Ts is the temperature field in the Aluminum-solid heat 
sink. 

For closing the equation system, standard k-ε turbulence model 
was used in this study. This model is largely used to estimate heat 

transfer and fluid flow in thermal systems(20,33,40,41). Also, this 
model is better to predict turbulent flow in channels(42). 

In order to evaluate heat transfer, performance and fluid flow 
behaviors of different PFHSs, we used some parameters which are 
summarized as follows (20).  

Nusselt number (Nu): 

Nu =
𝑞 𝐷ℎ

𝜆𝑎𝑖𝑟(𝑇𝑊−(𝑇𝑖𝑛+𝑇𝑜𝑢𝑡)/2)
                      (5)  

Where, q is the constant heat flux on the base plate of heat sink 
(5903 W/m2), λair is the thermal conductivity of air (0.024 W/m. K). 
Tin, Tout is the temperatures in the inlet and outlet of channel 
respectively. TW is the mean temperature of walls of the base plate 
and pin fins. 

Thermal resistance (Rth): 

𝑅𝑡ℎ = (𝑇𝑊 − 𝑇𝑖𝑛) 𝑞⁄                                                                                  (6) 

Pressure drops (Δp); 

𝛥𝑝 = 𝑝𝑖𝑛 − 𝑝𝑜𝑢𝑡                        (7)  

Hydro thermal performance factor (η) ;                                                                  

𝜂 = (
𝑁𝑢

𝑁𝑢𝐶𝑃𝐹𝐻𝑆
) (

𝛥𝑝

𝛥𝑝𝐶𝑃𝐹𝐻𝑆
)

1

3
⁄                            (8)  

Pumping power (PP):                                                                                                                                 

𝑃𝑃 = 𝑢𝑖𝑛 × 𝐴𝑐 × 𝛥𝑝                                                                 (9) 

Where, uin is the speed in the inlet of channel, Ac is the contact 
solid-fluid surface, 𝛥𝑝 is the pressure difference between inlet (pin) 

and outlet (pout) of channel heat sink. 
The regime of the air turbulent flow can be determined by using 

Reynolds number (Re): 

Re =
𝑢𝑖𝑛×𝐷ℎ

𝜐
                                                                            (10) 

Reynolds number (Re) is determined at the hydraulic diameter 
(Dh) and it ranging from 8740 to 22060 corresponding of inlet 
velocity interval of 4.14 to 10.45 m/s. Where the temperature in the 
inlet is set to 300K.                                                                                                               

2.3. Numerical method and procedure 

The simulation of conjugate heat transfer and turbulent fluid 
flow characteristics was conducted using the CFD software COM-
SOL Multi-Physics v. 5.4. The Reynolds Average Navier Stocks 
(RANS) and energy equations were discretized through the finite 
element method (FEM). Convergence criteria of 10-6 and 10-9 were 
set for the RANS and energy equations, respectively.  

Grid sensitivity analyzes were performed to ensure the accu-
racy of the numerical model. Tetrahedral and unstructured grid 
were generated for each case to determine the most efficient inde-
pendent grid mesh (Fig.3). 

 A free tetrahedral type mesh was utilized for all numerical do-
mains. Different grid sizes were tested for validation, for example, 
for CPFHSs arrangement, the grid of 1,367,577 was selected for 
following simulation.  
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Because, this case illustrated that Nusselt number (Nu) results 
showed that its deviation does not less than 1% compared to the 
refined grid cases. Similar grid independence assessments were 
carried out for other cases, resulting in the selection of specific grid 
sizes for each case. 

Fig.4 show an example of the test of the grid sensibility for the 
case 4. The simulations were run on a computing station with a 
CPU i7 and a frequency of 2.6 GHz and 16 Go of RAM, with each 
simulation typically taking around 4 hours.  

 
 

 

Fig. 3. Example of generated tetrahedral mesh, Case 4 
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Fig. 4. Test of grid independence for CPFs 

 

3. RESULTS AND DISCUSSION 

3.1. Validation of results 

It is crucial to evaluate the accuracy of the current model for 
realized the following simulations. This evaluation includes confirm-
ing the results by comparing them with available data from literature 
(31). For the validation, we utilized both Nusselt number (Nu) and 
pressure drop (Δp). 

Figs 5(a) and 5(b) depict the variation of Nu and Δp versus 
Reynolds number (Re), respectively. The examination of Nu results 
indicated a maximum deviation of 11.51% and 2.60% in compari-
son to the experimental and numerical results of Chin et al (31). 
Similarly, the assessment of Δp results displayed a deviation of 
15.83% and 8.21%. These deviations due to the utilization of three 
thermocouples in the inlet of the channel and other three thermo-
couples in the outlet by Chin et al (31). Where, in the present study, 
we used the mean surfaces of the inlet and outlet to evaluate the 
temperatures. 

 
a) Nusselt number (Nu) results 

 

b) Pressure difference (Δp) results  

Fig. 5. Validation of results for CPFs 
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3.2. Hydraulic and thermal aspects 

One factor that can reduce the effectiveness of CPFs is the cre-
ation of air vortices behind the pin at very low speeds (43), resulting 
in the formation of hot points or lower heat transfer areas 
(LHTAs)(44,45). Figs. 6 and 7 show the distribution of velocity 
streamlines and temperature contours for cases 0 and 4 as typical 
arrangements. In Fig. 6, the airflow splits into two regions as it 
passes over the sides of the cylindrical pins, with one region having 
high speeds that are conducive to heat transfer due to the turbu-
lence of air molecules. The second region, located directly behind 
the pin fins, experiences low-velocity eddies, leading to the for-
mation of hot spots and decreased heat transfer rates. 
  

 

 
a) Case 0 

 
b) Case 4 

 
Fig. 6.  Velocity streamline distribution (m/s) for a) case 0 b) and case  

4 at Re=22060 
 

 

 
 

 

a) Case 0 
 

 
 

b) Case 4 
 
Fig. 7.   Contours of local temperature distribution (K) for a) case 0 b) and   

case 4 at Re=22060 
 

To address this issue, solutions such as adding rings insert and 
perforation space have been proposed, as depicted in these fig-
ures. By adding rings around CPFs, the area of low-velocity regions 
can be reduced, decreasing recirculation flow zones and increasing 
heat transfer areas. Finally, the use of perforation techniques helps 
to reduce recirculation flow zones with low velocity, thereby de-
creasing LHTAs behind the pin fins. The flow pattern significantly 
influences thermal characteristics, with CPFs showing the mean 
highest temperatures due to the presence of LHTAs. However, by 
implementing solutions such as increasing perforation number, the 
occurrence of hot spots and LHTAs can be reduced, leading to im-
proved heat transfer coefficient. 

3.3. Nusselt number (Nu) and thermal resistance (Rth) 

 Fig.8 displays the variation of the Nusselt number (Nu) versus 
Reynolds number (Re) for various PFHS arrangements. The graph 
demonstrates that Nu augments with increasing Re, attributed to 
the increased inlet velocity and enhanced inertial shears near the 
walls. The findings reveal that Nu values increased by of 66.32%, 
116.58%, 146.80%, 127.63%, and 180.82% for case 0, case 1, 
case 2, case 3 and case 4, respectively, compared to cylindrical pin 
fins at Re = 22,060. Therefore, case 4 ensures better augmentation 
of heat transfer coefficient of 180.82% due to the perforated space 
which is helps not only augment heat transfer areas but also 
significantly reduces the formation of the lower heat transfer areas 
(LHTAs) behind of the pin fins. 

The variation of thermal resistance (Rth) against Re for different 
PFHS configurations was depicted in Fig.9. It is evident from this 
illustration that an increase in Re results in a decline in Rth, 
consistent with the trends observed for Nu in Fig. 8. A remarkable 
reduction in thermal resistance is achieved at the highest Reynolds 
number (i.e., Re = 22,060). 

The percentage reductions in Rth for case 0, case 1, case 2, 
case 3, and case 4 are 58.49%, 102.41%, 69.56%, 108.95%, and 
154.54% compared to the cylindrical pin fins (CPFs), respectively. 
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Fig. 8.  Variation of Nusselt number (Nu) versus Reynolds number (Re) 
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Fig. 9.  Variation of thermal resistance (Rth) versus Reynolds number (Re) 

 
 As a consequence, the location of rings around CPFs augment 
heat transfer areas which are participate to reduce the thermal 
resistance of PFHSs, where the perforation space obviously 
enhances conjugate heat transfer by augmenting heat transfer 
surfaces and diminishing hot spots behind the pin fins. From these 
results, case 4 ensures a significant reduction in the thermal 
resistance by 154.54% compared to CPFs at Re = 22,060. 
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Fig. 10. Variation of pressure difference (Δp) versus Reynolds number 

(Re) 

3.4. Pressure drops (Δp) and pumping power (PP) 

Fig.10 illustrates the variation of the pressure drop (Δp) and 
Reynolds number (Re) across different PFHS arrangements. 
These configurations present prominent advantages over 
conventional or cylindrical pin fin heat sinks (CPF), resulting in a 
significant reduction in pressure losses despite the enhanced heat 
transfer coefficients except case 0. The graph indicates that with 
an increase in Reynolds number (Re), there is a corresponding 
increase in pressure drop due to the emergence of flow blocking 
phenomena and heightened inertial shears near the wall of pin fins 
(PFs) and the base plate. The findings reveal that in comparison to 
CPFs at Re = 22,060, there is a remarkable reduction in Δp by 
14.46 %, 34.46 %, 61.04%, and 62.19% for case 1, case 2, case 
3, and case 4, respectively. Except, case 0 creates a pressure drop 
penalty of 29.22% for the same comparison. These results 
demonstrate that the perforation space helps to reduce pressure 
drop due to the diminution in blockage flow before the pin fins. 

The integration of rings around of the CPFs and perforation 
methods has partially removed recirculation zones behind the pin 
fins, which are responsible for reducing pressure drop. The 
pumping power (PP) is directly related to the pressure drop (Δp), 
inlet velocity (uin), and frontal area (Ac) as depicted in equation 9. 
Fig. 11 shows the linking between PP and Re for various PFHS 
configurations. It is obvious that an increase in Re leads to an 
evolution in PP due to the amplified inlet velocity. Nevertheless, a 
substantial increase in PP is observed in the proposed 
configurations compared to CPFs, attributed to the augmentation 
in frontal area (Ac). For the highest Reynolds number (Re = 
22,060), PP augments by 39.56%, 31.67%, 32.43%, 26.91%, and 
41.29% for case 0, case 1, case 2, case 3, and case 4, 
respectively, compared to CPFs at Re = 22,060. 
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Fig. 11. Variation of pumping power (PP) versus Reynolds number (Re) 

3.5. Hydro thermal performance, volume and mass 
optimization 

Fig. 12 illustrates the change in hydro thermal performance 
factor (η) with Reynolds number for pin fin heat sinks (PFHSs) 
featuring different perforation and rings arrangements. The figure 
indicates that η values are consistently above 1 for all 
configurations of PFHS, suggesting that these configurations 
exhibit superior performance compared to the reference case 
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(CPFs). This underscores the effectiveness of the perforation 
technique and rings insert in enhancing the thermal performance 
of the PFHSs, at least within the scope of this study. Furthermore, 
in the presence of rings insert, the results reveal that rings 
increases both with higher Reynolds number and an increased 
number of perforations. Specifically, for Cases 0 to 4 at Reynolds 
number of 22,060, the corresponding η values are approximately 
1.57, 2.26, 2.72, 2.67 and 3.29, respectively. Based on these 
findings, it is determined that case 4 demonstrates the highest 
performance, achieving an η of 3.29 at Reynolds number of 
22,060, and is thus identified as the optimal configuration. 
Compared with  the reference case (31), the optimal configuration 
(case 4) ensures an reduction of 77.5% and 77.65% for the  volume 
and mass of heat sink, respectively, leading to space and cost 
savings in addition to improved hydrothermal performance. 
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Fig. 12. Variation of thermal resistance (η) versus Reynolds number (Re) 
 

8 10 12 14 16 18 20

1,5

1,8

2,1

2,4

2,7

3,0

3,3

Re=22060

Case 4

Case 3

Case 2

Case 1

Case 0



Contact surface * 10
3
, A

C
 [mm

2
]  

 
Fig. 13. Variation of the hydrothermal performance factor (η) versus 

contact surface (AC) 
 

Fig. 13 depicts the variation of the hydrothermal performance 
factor versus contact surface. The first observation from this figure 
is insertions of ring and perforation augment the surface of contact. 
Usually, the increase in the surface of contact between air flow and 
the solid let to an augmentation in the performance of heat sink.  In 
addition, the perforation in external rings leads to slight diminution 
in the thermal performance as shown in case 2 to case 3.  But, the 
perforation in the rings and grooves helps to augment the hydro-
thermal performance factor. 

4. CONCLUSION 

A series of 3D numerical simulations were conducted to opti-
mize the design of a heat sink. The study investigated the perfor-
mance of five different heat sink configurations at Reynolds number 
(Re) ranging from 8740 to 22060 and compared to a cylindrical pin 
fin (CPFs). Some conclusions were reported and summarized as 
follows: 

− The use of both perforated and ring inserts can enhance heat 
transfer rates and decrease the size and weight of heat sinks. 
Also, this combination helps to creates better mixture of flow 
around of PFHS. 

− For the case 4, the Nusselt number increased by 180.82%, 
leading to a 154.54% reduction in thermal resistance compared 
to traditional CPFs. Fortunately, this configuration participates 
in important reduction in the pressure drop by 62.19%. Further-
more, it achieved the highest η of 3.29 at Re = 22,060. 

− Compared with  the conventional CPFs (31), the optimal con-
figuration (case 4) ensures a reduction of 77.5% and 77.65% 
for the  volume and mass of heat sink.  

− For the same optimal case, the pumping power increased by 
41.29% under the same conditions of comparison. 

 

Nomenclature 

 

𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  Reynolds stress [m2/s2] 

𝑢𝑖
′𝜃̅̅̅̅̅ Turbulent heat flux [m.K/s] 

x Cartesian coordinate vector [m]  
𝜈 Kinematic viscosity [m2/s] 

𝑝̅ Modified kinematic pressure [m2/s2] 

𝛥𝑝 Pressure drops [Pa] 

𝛼 Thermal diffusivity [m2/s] 
k Turbulent kinetic energy [m2/s2] 
i,j Velocity vector [m/s] 
q Constant heat flux [W/m2] 
µ Dynamic viscosity [kg/m.s] 
Ac Frontal heat transfer area [m2] 
Cp Specific heat [J/kg.K] 
Dh Hydraulic diameter [m] 
Nu Nusselt number 
Re Reynolds number 
Rth Thermal resistance [K.m2/W] 
T Temperature [K] 
u Mean speed [m/s] 
λ Thermal conductivity [W/m2.K] 

Subscript 
 

i,j Tensor index 
in Inlet 
out Outlet 
s Solid 
w Wall 

Abbreviations 
 

CPFs Cylindrical pin fins 
CPFHS Cylindrical pin fins heat sinks 
PFHSs Pin fins heat sinks 
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