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Abstract: Detecting moving objects in videos is an evolving area of research, with important implications in many computer vision  
applications. In this paper, we propose a new detection approach by combining background subtraction and multi-level image thresholding 
based on fuzzy entropy, powered by the differential evolution (DE) algorithm. The first step of our method is background subtraction,  
aiming to isolate moving objects by eliminating the static background. However, this approach can be sensitive to lighting variations  
and background changes, thus limiting its accuracy. To overcome these limitations, we introduce multi-level image thresholding based  
on fuzzy entropy. This method exploits the intrinsic variability of moving objects rather than simply differentiating against the background. 
By adjusting thresholds locally, our approach better adapts to changing environmental conditions. The key element of our proposal lies  
in the optimization of the fuzzy entropy threshold parameters using the differential evolution algorithm. We chose DE for its robustness  
and efficiency in handling continuous optimization problems, which makes it well-suited for complex tasks like multi-level image threshold-
ing. By iteratively adjusting the thresholds, we maximize the detection of moving objects while minimizing false positives, thereby improving 
the robustness and accuracy of the method. Our experiments on test video sequences demonstrate the effectiveness of our approach, 
highlighting a significant improvement in moving object detection compared to traditional methods. This promising methodology paves the 
way for future advances in moving object detection, with potential applications in surveillance, robotics, and computer vision in general. 
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1. INTRODUCTION 

In the ever-evolving realm of computer vision, accurately 
segmenting objects in video streams remains a pivotal challenge 
with profound implications across numerous domains. This task, 
crucial for applications spanning from video surveillance to hu-
man-machine interaction, including personal safety and industrial 
process monitoring, necessitates robust methodologies capable of 
dynamically adapting to changing environmental conditions. 

Background subtraction [1, 2] has emerged as a widely rec-
ognized technique in video object segmentation, aiming to distin-
guish foreground objects from a dynamic background. Among 
these approaches, the median background model stands out for 
its effectiveness in adapting to dynamic scenes, capturing median 
pixel values to provide a stable background representation amidst 
variations such as lighting changes and moving shadows. 

However, the effectiveness of background subtraction meth-
ods, including the median background model, is impeded by 
persistent challenges such as false positives and negatives. False 
positives occur when non-object regions are erroneously identi-
fied, while false negatives result from the failure to detect real 
objects, often due to complex variations in lighting or background 
dynamics. 

To address these challenges, this article proposes an innova-
tive post-processing scheme by combining the median back-
ground model with the gamma correction factor and the Ma-

halanobis distance metric. This synergistic approach aims to 
mitigate both false positives and negatives. Gamma correction 
enhances image contrast, facilitating the differentiation between 
foreground and background elements, while the Mahalanobis 
distance metric offers a robust statistical measure assessing the 
dissimilarity between pixels in difference images. 

The primary contribution of this article lies in introducing an 
innovative post-processing scheme that significantly enhances the 
accuracy of video object segmentation. Focusing on the object 
segmentation process, we exploit enhanced difference images 
using fuzzy entropy and differential evolution. Fuzzy Entropy [3] 
resolves inherent uncertainty in difference frames, while Differen-
tial Evolution [4, 5] optimizes the segmentation process, enhanc-
ing the accuracy and efficiency of object delineation in the video 
stream. Subsequent sections will delve deeper into the methodol-
ogy, experimental setup, and results, demonstrating how this 
post-processing scheme synergistically integrates with the median 
background model to establish a refined segmentation framework. 

The paper is structured as follows: it begins by reviewing pre-
vious work on foreground detection, encompassing deep learning-
based methods and traditional approaches. Subsequently, Sec-
tion 3 elaborates on our MOD-BFDO method for foreground de-
tection, which integrates background subtraction, fuzzy entropy 
thresholding, and differential evolution optimization. Experimental 
results and discussion are presented in Section 4, followed by 
concluding remarks in Section 5. 
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2. RELATED WORK 

Detecting moving objects in video is a dynamic area of re-
search, marked by notable advances in multi-level image thresh-
olding and the integration of fuzzy entropy with metaheuristic 
algorithms like differential evolution, as demonstrated in works 
such as [6]. The choice of Differential Evolution (DE) among 
various metaheuristic algorithms stems from its balance between 
exploration and exploitation, making it particularly effective for 
optimization problems in image segmentation. DE has shown 
strong adaptability in handling continuous optimization problems, 
which aligns well with the complexity of multi-level thresholding in 
dynamic video sequences. These results have driven our explora-
tion in the specific context of moving object detection. Localized 
approaches outlined in [7] have further piqued our interest in 
detecting objects within well-defined areas in video sequences. 
Meanwhile, global approaches to multi-level thresholding, as 
discussed in [8], offer crucial insights for improving detection 
across sequences. Li et al. (2023) introduced an approach based 
on the Improved Slime Mould Algorithm (SMA) combined with 
symmetric cross-entropy for multi-level thresholding, achieving 
greater accuracy in complex image segmentation tasks [9]. Addi-
tionally, Zhou et al. (2023) proposed a complex-valued encoding 
golden jackal optimization for multilevel thresholding image seg-
mentation, further enhancing the robustness of image segmenta-
tion techniques [10]. 

Recent developments in fuzzy-based methods also play an 
essential role in this domain. For example, [11] introduces a ro-
bust approach to moving object detection by fusing Atanassov's 
Intuitionistic 3D Fuzzy Histon Roughness Index and texture fea-
tures, enhancing performance in diverse conditions. Similarly, [12] 
uses Atanassov's intuitionistic fuzzy histon for robust detection in 
noisy environments. Another notable contribution is [13], which 
proposes a novel feature descriptor for moving object detection, 
showcasing improvements in robustness, particularly in complex 
scenes. 

In addition to fuzzy-based approaches, the exploration of syn-
ergies between differential evolution, fuzzy entropy, and alterna-
tive entropy measures, as highlighted in [14], has broadened our 
understanding of multi-level image thresholding techniques. 
These advanced approaches can be categorized into two broad 
classes: methods based on deep learning and traditional unsu-
pervised learning. 

In the realm of deep learning, [15] presents a novel approach 
using deep neural networks for detecting moving objects, offering 
superior accuracy and generalization. Similarly, [16] highlights the 
potential of convolutional neural networks (CNNs) for robust mov-
ing object detection, while [17] uses generative adversarial net-
works (GANs) to generate improved training data for enhanced 
detection performance. Another contribution, [18], applies transfer 
learning to improve detection generalization across various sce-
narios. 

In the domain of moving object detection, traditional unsuper-
vised learning methods, such as background subtraction, tem-
poral segmentation, and clustering, have proven effective due to 
their simplicity and low computational requirements. Techniques 
like adaptive thresholding using wavelet transforms and principal 
component analysis (PCA) capture spatial and temporal features, 
making them reliable in dynamic environments. For example, [19] 
introduces a method using stationary wavelet transforms for 
background subtraction, showing high accuracy. Similarly, [20] 
demonstrates temporal segmentation’s effectiveness, while [21] 

emphasizes the robustness of traditional approaches in specific 
conditions. These methods underscore the resilience and adapta-
bility of unsupervised learning, maintaining relevance despite the 
rise of deep learning. Additionally, [22] explores unsupervised 
clustering to group objects based on temporal similarities, and [23] 
highlights the application of PCA for detecting moving objects in 
complex sequences. Traditional methods, despite their limitations, 
continue to be valuable in scenarios where deep learning models 
may be less practical due to computational or data constraints. 

By consolidating these related works, our paper offers an in-
tegrated methodology for detecting moving objects in videos, 
emphasizing the synergies between fuzzy entropy, differential 
evolution, and multi-level image thresholding. 

3. METHODOLOGY 

This study focuses on improving object segmentation in video 
streams by combining the median background model, an innova-
tive post-processing scheme, and advanced segmentation tech-
niques based on entropy and differential evolution. The main goal 
is to achieve accurate segmentation of moving objects while 
overcoming the challenges of false positives and false negatives 
in the object delineation process. 

 
Fig. 1.   General flow chart of the proposed method 

3.1. Calculation of Difference Images Using Median 
Background Model 

Calculating image difference using the Median Background 
Model is a fundamental step in our methodology. This phase 
involves capturing the dynamic changes in a video sequence by 
subtracting the median background from each frame. The Median 
Background Model is presented as a robust representation of the 
static scene, adapting to variations in lighting, shadows, and 
gradual environmental changes 

3.1.1. Background Model Initialization 

This step begins by initializing the median background model 
using a set of consecutive frames from the video sequence. Medi-
an pixel values are calculated independently for each pixel posi-
tion on this set, creating a stable background representation. 

𝐵𝑘𝑔(𝑥, 𝑦) =
∑ 𝐼(𝑋,𝑦)
𝑁
𝑚

𝑁
                                                         (1)  
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In this context, 𝐵𝑘𝑔(𝑥, 𝑦) represents the pixel intensity of the 
background model at coordinates (𝑥, 𝑦), while 𝐼(𝑥, 𝑦) denotes 

the pixel intensity at (𝑥, 𝑦) within the frame. The background 
model is constructed using 𝑁 frames, where 𝑁 signifies the num-
ber of frames incorporated within the process. 

3.1.2. Frame-wise Subtraction 

For each subsequent frame in the video sequence, we mainly 
perform a per-pixel subtraction of the average background calcu-
lated from the current frame. The result is a different image that 
highlights the dynamic elements of the scene that stand out from 
the static background. 

𝛥𝑡 = |𝐼(𝑥, 𝑦) − 𝐵𝑘𝑔(𝑥, 𝑦)|                                                (2) 

When detecting moving objects, updating the background is a 
crucial step. With each iteration of the algorithm, the background 
model is dynamically adjusted. This adaptation concerns each 
pixel of the matrix, and each pixel is modified according to the 
dynamic matrix resulting from the subtraction between the current 
image and the initial background. For maintaining an accurate and 
up-to-date representation of the background, it is essential to 
adopt an adaptive method. This approach takes into consideration 
changes observed in the scene over time. More precisely, it ad-
justs the values of the dynamic matrix according to new infor-
mation coming from the current image. Thus, updating the dynam-
ic matrix not only makes it possible to detect moving objects. 
Nonetheless, to intelligently adapt to variations in the scene to 
ensure robust and precise detection. 

When looking closely at the difference images, it becomes 
apparent that some background pixels may be misclassified, 
thereby leading to inaccurate segmentation of foreground objects. 
This imprecision can compromise the overall quality of the seg-
mentation and introduce false positive regions. It is imperative to 
undertake additional processing on the different images to rectify 
this situation. This processing process aims to eliminate these 
false positive areas, thereby improving the reliability of object 
segmentation and obtaining more accurate results in identifying 
elements of interest. Adopting this approach strengthens the 
algorithm's ability to correctly discern the edges and details of 
foreground objects, thereby contributing to more robust and relia-
ble segmentation. 

 
Fig. 2.   The first row shows the original images, the second row shows 

the generated difference images 

 

3.2. Post-processing diagram 

A new post-processing scheme is introduced to improve the 
results obtained by background subtraction. This system compris-
es two basic elements. 

3.2.1. Gamma correction 

For enhancing contrast, the difference images use the gamma 
correction factor. By improving the ability to distinguish between 
foreground and background items, this improvement helps to 
lower the number of false positives. 

Our approach consists of first defining a gamma correction 
factor higher than 1, which maps intensity values to lower output 
values, and then defining a value below 1, which extends intensity 
values to higher levels. Figure 3 shows the change in the output 
image's intensity with the input image's intensity values for a fixed 
gamma value. This lessens the low-value gris noise concentration 
zones. 

 
Fig. 3.   Change in intensity of the input image along the x-axis relative to 

the output image along the y-axis, when gamma is less than or 
equal to 1 and b gamma is greater than or equal to 1 

3.2.2. Mahalanobis Distance Metric 

The produced different images are, then, subjected to a Ma-
halanobis distance calculation, which produces a refined differ-
ence image free of outlier pixels. The sample mean and covari-
ance of the difference image—whose mean value skews toward 
the higher gray level values—are used in this approach. As a 
result, this averaging effect helps to remove ambiguity or unclear-
ness from areas with low-valued gray levels. When it comes to 
reducing the impact of large covariance directions—especially 
those brought on by noisy components—the Mahalanobis dis-
tance is essential. Therefore, any noise is seen as an outlier and 
is essentially averaged out. The Mahalanobis distance metric 
uses the spatial orientation of the variables, taking into considera-
tion their covariance between them. 

The post-processing schemes eliminated most of the gray ar-
eas present in the output. The representation of the moving object 
in Figure 4 is significantly more defined compared to the smudged 
output observed in Figure 2. The results obtained in Figure 4 also 
facilitate segmentation due to the elimination of several outliers. 



DOI 10.2478/ama-2025-0013                                                                                                                                                          acta mechanica et automatica, vol.19 no.1 (2025)                                                                                                                             
 

109 

 
Fig. 4.   The first row shows the original images, and the post-processing 

scheme improves the difference images 

3.3. Object Segmentation using Fuzzy Entropy  
and Differential Evolution 

The next stage of our process is object segmentation, which is 
essential to fine-tuning the initial difference images. We utilize two 
sophisticated methods, Differential Evolution, and Fuzzy Entropy, 
to improve the accuracy and stability of the segmentation proce-
dure. The local Fuzzy Entropy and Differential Evolution thresh-
olding approach is carried out in two major stages as depicted  
in Fig. 5. 

 

Fig. 5.   Flowchart of segmentation process 

3.3.1. Fuzzy Entropy 

Fuzzy entropy is presented as a powerful tool for dealing with 
the uncertainty inherent in different images. In scenarios where 
pixel values may be fuzzy or ambiguous, fuzzy entropy captures 
the complexity of the pixel distribution. By incorporating the princi-
ples of fuzzy logic, it provides a nuanced measure of entropy, 
enabling more adaptive and accurate segmentation in regions 
with varying degrees of certainty. 

 

Fig. 6.   Fuzzy membership function for n - level segmentation 

 
A classical set, denoted as A, is essentially a collection of el-

ements that may or may not be members of set A. In the realm of 
fuzzy sets, which is an extension of classical sets, an element can 
exhibit partial membership within set A. The definition of A could 
be stated as follows: 

𝐴 = {(𝑥, 𝜇𝐴(𝑥))|𝑥 ∈ 𝑋}                                                             

(3)       

where 0 < 𝜇𝐴(𝑥) < 1 and 𝜇𝐴(𝑥) is the membership function, 
which measures 𝑥 's proximity to A. 

In this study, a trapezoidal membership function; as depicted 
in Fig. 6, is utilized to estimate the membership of n segmented 
areas,𝜇1, 𝜇2, . . . . . , 𝜇𝑛, by employing 2 (𝑛 − 1) unknown fuzzy 
parameters, namely 𝑎1, 𝑐1. . . 𝑎𝑛 − 1, 𝑐𝑛 − 1,𝑤ℎ𝑒𝑟𝑒 0 <
𝑎1 <  𝑐1 <. . . < 𝑎𝑛 − 1 <  𝑐𝑛 − 1 <  𝐿 − 1. Then, for n-
level thresholding, the following membership function can be 
obtained. 
 

𝑘){

1                𝑘<𝑎1
𝑘−𝑎1
𝑎1−𝑐1

      𝑎1≤𝑘≤𝑐1                             

0              𝑘 > 𝑐1  
                        ⋮                 

                                                  (4) 

𝜇𝑛−1(𝑘) =

{
 
 

 
 

0                k<an-2
k-an-2

cn-2-an-2
      an-2≤k<cn-2

              1                         cn-2≤   k  ≤an-2
k-cn-1

an-1-cn-1
              an-1≤   k  ≤cn-1

                     

  0                   k>cn-1

                

(5) 

𝜇𝑛(𝑘) = {

1                k<an-1
𝑘−𝑎𝑛

𝑎𝑛−𝑐𝑛
      𝑎𝑛−1 ≤ 𝑘 ≤ 𝑐𝑛−1

1              𝑘 > 𝑐𝑛−1

                                    (6) 

The maximization of fuzzy entropy at multiple levels of the im-
age, i.e., background and foreground areas, can be formulated as 
follows. 

 
𝐻𝑛 = 𝐻1 +𝐻2 +⋯+𝐻𝑛 = 

−∑
𝑃𝑖𝜇1(𝑖)

𝑃1

𝐿−1
𝑥=0 𝑙𝑛

𝑃𝑖𝜇1(𝑖)

𝑃1
  − ∑

𝑃𝑖𝜇2(𝑖)

𝑃2

𝐿−1
𝑥=0 𝑙𝑛

𝑃𝑖𝜇2(𝑖)

𝑃2
−⋯⋯−

∑
𝑃𝑖𝜇𝑛(𝑖)

𝑃𝑛

𝐿−1
𝑥=0 𝑙𝑛

𝑃𝑖𝜇𝑛(𝑖)

𝑃𝑛
                                                                  (7)   

where  
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𝑃1 = ∑ 𝑝𝑖𝜇1(𝑖)

𝐿−1
0 , 𝑃1 = ∑ 𝑝𝑖𝜇2(𝑖)

𝐿−1
0  , … , 𝑃𝑛 =

∑ 𝑝𝑖𝜇𝑛(𝑖)
𝐿−1
0   

and 𝑃𝑖 is the probability measure of the occurrence of gray levels. 
Maximizing the total entropy gives the optimal value for the 

parameters. 

𝜑(𝑎1, 𝑐1⋯⋯ , 𝑎𝑛−1, 𝑐𝑛−1 = 𝐴𝑟𝑔𝑚𝑎𝑥(𝐻1 +𝐻2 +⋯+𝐻𝑛)             

                                                                                                     (8) 

It is essential to apply a global optimization technique to effec-
tively optimize equation (8) and simultaneously reduce the time 
complexity of the proposed method. The (n-1) threshold values 
can be obtained using the fuzzy parameters as follows: 

𝑇1 = (
𝑎1+𝑐1

2
); 𝑇2 = (

𝑎2+𝑐2

2
); ⋯⋯ ; 𝑇𝑛−1 = (

𝑎𝑛−1+𝑐𝑛−1

2
)     (9) 

3.3.2. Differential Evolution Optimization 

In our approach, the optimization phase has a crucial position 
in perfecting the object segmentation process. To do this, we 
exploit differential evolution; a global optimization technique pro-
posed by Storn [4]. This robust method adaptively adjusts the 
parameters of the segmentation algorithm, aiming to search for a 
global optimal point in a real parameter space of dimension R^D. 
More precisely, we use a simple version of differential evolution, 

called the DE/rand/1 scheme, where the 𝑖𝑡ℎ individual of the 
population, represented as a vector of dimension D, contributes 
significantly to improving the accuracy of the segmentation pro-
cess. 

�⃗�𝑖(𝑡) = [�⃗�𝑖,1(𝑡), �⃗�𝑖,2(𝑡),⋯⋯ , �⃗�𝑖,𝐷(𝑡) ]                              (10) 

The first step is initialization. the set is randomly initialized in 
the search space, according to the following: 

�⃗�𝑖,𝑗(𝑡) = [𝑋𝑗𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∗ (𝑋𝑗𝑚𝑎𝑥 − 𝑋𝑗𝑚𝑖𝑛)]                    (11) 

𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑎𝑛𝑑 𝑗 = 1 𝑡𝑜 𝐷                              

Where (𝑋𝑗𝑚𝑎𝑥) and (𝑋𝑗𝑚𝑖𝑛) define the maximum and mini-

mum limits of the search space respectively. NP represents the 
total population engaged in the search process, and a rand is a 
random number between 0 and 1. At each iteration, for each 
parent, a mutant vector, called a donor vector, emerges through 

the differential mutation operation. Creating the 𝑖𝑡ℎ donor vector 

�⃗⃗�𝑖(𝑡) for the 𝑖𝑡ℎ parent vector involves choosing three other 
parent vectors (e.g., the 𝑎1, 𝑎2, 𝑎𝑛𝑑 𝑎3 − 𝑡ℎ vectors, where 

𝑎1, 𝑎2, 𝑎3 ∈ [1, 𝑁𝑃] and 𝑎1 ≠  𝑎2 ≠  𝑎3 are selected ran-
domly from the current population). Thus, the donor vector can be 
formulated as follows: 

�⃗⃗�𝑖(𝑡) = �⃗�𝑎1(𝑡) + 𝐹 ∗ (�⃗�𝑎2(𝑡) − �⃗�𝑎3(𝑡) )                          (12) 

Where 𝐹 (scalar quantity called a weighting factor) exerts its 
influence. The next step involves optimizing the potential diversity 
of donor vectors to create test vectors. A binomial crossing opera-
tion is methodically applied to each of the D variables of a vector, 
following a rigorous protocol. 

𝑅𝑖,𝑗(𝑡) = {
𝑌𝑖,𝑗(𝑡),   𝑖𝑓 𝑟𝑎𝑛𝑑𝑗  (0,1)  𝑥 ≤ 𝐶𝑟 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑 
𝑋𝑖,𝑗(𝑡),                                             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

     

                                                                                                   (13) 

Each 𝑗, from 0 to 𝐷, and 𝑟𝑎𝑛𝑑𝑗 in the interval [0,1], repre-

sents the 𝑗𝑡ℎ evaluation of a uniform random generator. The 

component of �⃗�𝑖(𝑡) and 𝐶𝑟 symbolizes the crossover rate. The 
test vector evolves as a renewed parental progenitor for iteration 
𝑡 + 1 if it outperforms, in terms of the fitness function value (in 
case of maximization), the current parental vector in iteration 𝑡. 

�⃗�𝑖(𝑡 + 1) = {
�⃗⃗�𝑖(𝑡), 𝑖𝑓 𝑓(�⃗⃗�𝑖(𝑡)) ≥ 𝑓(�⃗�𝑖(𝑡))

�⃗�𝑖(𝑡), 𝑖𝑓 𝑓(�⃗⃗�𝑖(𝑡)) < 𝑓(�⃗�𝑖(𝑡))  
                 (14) 

The previous steps are iterated until the termination criterion is 
met, which is defined by the number of iterations. 

4. EXPERIMENT RESULTS 

In this section, we demonstrate the intrinsic relevance of our 
advanced methodology through a detailed presentation of experi-
mental results. A comprehensive comparison was made between 
the performance of our approach (MOD-BFDO) and other meth-
ods, including five background subtraction-based approaches: the 
SuBSENSE [24] approach, the SC_SOBS [25] approach, the 
GMM_Zivkovic [26] approach, the GMM [31] approach, and the 
Cuevas [32] approach, as well as a deep learning-based ap-
proach, namely DeepBS [27]. All evaluations were conducted on 
three distinct datasets: the SBI [29], CDnet 2014 [28], LASIESTA 
[30], BMC2012 [33] databases. These datasets consist of se-
quences captured by cameras deployed in both public and private 
environments, containing various moving or stationary entities 
within the scene, such as vehicles, individuals, and others. 

4.1.    Qualitative Measurement 

4.1.1. Qualitative evaluation using the CDnet 2014 and SBI 
datasets 

During this step, we proceed to analyze and evaluate the de-
tection results obtained using our approach, while and comparing 
these results with those obtained by other front-end detection 
methods in various contexts. Experimental scenes are classified 
based on different criteria, such as homogeneous illumination, 
light contrast, presence of shadows, range, occlusion, presence of 
multiple targets, weak signals, and baseline. A detailed analysis of 
these scenes is presented as follows. 

4.1.1.1. Illumination changes 

Figure 7 shows the experimental results obtained under uni-
form illumination. The first row presents the original image, the 
second row exposes the ground truth image and the seventh row 
reveals the result of our approach. Lines 7(3) to 7(6) show the 
results of the DeepBS [27], SC_SOBS [25], SuBSENSE [24], and 
GMM_Zivk [26] methods, respectively. For the HallAndMonitor-
HM video, the presented results were obtained with optimal 
thresholds automatically calculated by our method based on 
differential evolution. For NThr=4, the optimal thresholds averaged 
are 63.5, 128, 190.5, and 254. This choice of NThr indicates that 
the algorithm has determined four thresholds to segment the 
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image. These thresholds maximize the detection of moving ob-
jects while reducing noise and false positives, offering a good 
compromise between accuracy and computational complexity.  

After carrying out experiments on the “HumanBody1-HB” and 
“HallAndMonitor-HM” videos, our approach, as well as DeepBS 
[27], demonstrated satisfactory performance without requiring 
specific quality measurements as a reference. But when it came 
to the detailed rendering of the target object, other leading detec-
tion methods showed less convincing results, particularly methods 
that tend to overlook detailed information, thus leading to detec-
tion errors. 

Compared to these methods, our approach stands out for its 
effec-tiveness in eliminating slight deformations while preserving 
target details. This efficiency arises from the use of a multi-scale 
fusion model, which more adequately preserves the contours and 
details of the target objects. 

 

Fig. 7.   Comparative analysis of our approach with state-of-the-art meth-
ods by exploiting specific videos such as “HumanBody1-HB” and 
“HallAndMonitor-HM” from the SBI2015 dataset. The left-to-right 
layout shows results for: original, ground truth, DeepBS [27], 
SC_SOBS [25], SuBSENSE [24], GMM_Zivk [26}, as well as our 
method. The results for NThr=4 are displayed in this figure 

4.1.1.2. Dynamic background 

 Figure 8 presents the experimental results obtained in vari-
ous situations (dynamic background (CE), bad weather (SF), and 
shadow (BS)). The first row of Figure 8 shows the original image, 
the second row shows the ground truth image and the seventh 
row shows the result of our approach. Lines 8(3) to 8(6) corre-
spond respectively to the results of the DeepBS [27], SC_SOBS 
[25], SuBSENSE [24], and GMM_Zivk [26] methods. 

Analyzing videos with dynamic backgrounds represents a sig-
nificant challenge in the field of object detection. Our approach 
was designed specifically to deal with this complexity, and the 
results obtained are very promising. Compared to several other 
methods, notably DeepBS [27], our approach stands out remark-
ably. Videos demonstrating scenes with constantly changing 
backgrounds are often subject to slight distortions and complex 
movements, making object detection difficult. 

In our experiments, the results obtained by our approach and 

DeepBS [27] outperformed those of other methods. Figures re-
vealing frames extracted from videos with dynamic backgrounds 
show exceptional clarity and accuracy in detecting target objects. 
Our approach, like DeepBS [27], managed to maintain satisfactory 
performance, even in complex conditions where other methods 
showed limitations. 

Using Differential Evolution models in our approach has prov-
en effective in removing slight deformations and retaining details 
of target objects, which is crucial in dynamic environments. These 
results suggest that our approach, in tandem with DeepBS [27], 
constitutes a particularly robust and satisfactory solution for object 
detection in videos with dynamic backgrounds, thus opening new 
perspectives for various applications, such as video surveillance 
and real-time computer vision. 

4.1.1.3. Bad weather  

The figure shows the performance of seven object detection 
methods on a video sequence captured under bad weather condi-
tions. The first two rows present the original images and the 
ground truth, respectively. The results of the different detection 
methods are displayed in rows 3 to 7. 

In general, deep learning-based detection methods, such as 
DeepBS and our approach, achieve better results compared to 
non-deep learning methods like GMM_Zivk [26], SuBSENSE [24], 
and SC_SOBS [25]. This is likely due to the ability of deep learn-
ing-based methods to learn object characteristics, allowing for 
more accurate identification in challenging conditions. 

In this experiment, our approach determined four thresholds to 
segment the bad weather video, with the optimal values averaging 
56.5, 107, 178.5, and 254.5. These thresholds were specifically 
selected to enhance the detection of moving objects while mini-
mizing noise and false positives, ensuring a robust trade-off be-
tween detection accuracy and computational efficiency 

 
Fig. 8.   Comparative analysis of our approach with state-of-the-art meth-

ods by exploiting specific videos such as “SnowFall-SF”, 
“BusStation-BS” and “Canoe-CE” from the CDnet 2014 dataset. 
The left-to-right layout shows results for original, ground truth, 
DeepBS [27], SC_SOBS [25], SuBSENSE [24], GMM_Zivk [26], 
as well as our method, The results for NThr=4 are displayed in 
this figure 
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Specifically, the DeepBS [27] method delivers the best per-
formance on the bad weather video sequence, followed closely by 
our method. SuBSENSE [24] performs similarly to our method, 
though it is slightly less accurate than DeepBS [27]. SC_SOBS 
[25] produces the weakest results, though it still manages to 
detect some objects. 

The GMM_Zivk [26] method yields the poorest performance 
on the bad weather video sequence, likely due to its reliance on 
simplifying assumptions about the object distribution. These as-
sumptions may not hold in real-world conditions, leading to a 
significant loss in accuracy. 

4.1.1.4. Baseline 

The figure shows the results of seven object detection meth-
ods on two video sequences, one of road traffic and one of pedes-
trians. Rows 1 and 2 of the figures show the original images and 
the ground truth, respectively. Lines 3 to 7 show the results of the 
different detection methods. 

In general, deep learning-based detection methods (DeepBS 
[27]) and our method achieve better results than non-deep learn-
ing-based methods SC_SOBS [25], SuBSENSE [24], and 
GMM_Zivk [26]. Probably, it is because our method and deep 
learning-based methods can learn the characteristics of the ob-
jects to be detected, which allows them to detect objects under 
difficult conditions accurately.  

 
Fig. 9.   Comparative analysis of our approach with state-of-the-art meth-

ods by exploiting specific videos such as “Highway-HG” and 
“Pedestrians-PD” from the CDnet 2014 dataset. The left-to-right 
layout shows results for original, ground truth, DeepBS [27], 
SC_SOBS [25], SuBSENSE [24], GMM_Zivk [26], as well as our 
method. The results for NThr=4 are displayed in this figure 

Specifically, our method obtains the best results on the road 
traffic sequence, followed by the DeepBS [27] method. The SuB-
SENSE [24] method obtains good results on both sequences, but 

it is slightly less precise than DeepBS [27] and our method. The 
SC_SOBS [25] method obtains results comparable to those of 
SuBSENSE [24]. The GMM_Zivk [26] method obtains the worst 
results on both sequences because the GMM_Zivk [26] method 
relies on simplifying assumptions about the distribution of the 
tracked objects. These assumptions may not be valid in real-world 
conditions, resulting in a loss of accuracy. 

4.1.2. Qualitative evaluation using the LASIESTA and 
BMC2012 dataset 

Figures 10 and 11 demonstrate the performance of the MOD-
BFDO approach on two challenging sequences from the LASIES-
TA dataset. In Figure 10, the method handles moderate shadows 
effectively, accurately detecting and segmenting moving objects 
with minimal errors, showing robustness in controlled indoor envi-
ronments. In contrast, Figure 11 highlights the method's challeng-
es with dynamic backgrounds, camouflage, and hard shadows, 
where some moving objects are not fully detected. Despite these 
limitations, the approach still performs reasonably well in such 
complex scenarios. Overall, the results indicate that the MOD-
BFDO approach is effective for object detection but may struggle 
in environments with high background complexity. 

 
Fig. 10.  Qualitative Performance of the MOD-BFDO Approach on 

I_BS_01 (Bootstrap, Moderate Shadows): (a) Original Image, (b) 
Grayscale Image, (c) Ground Truth, (d) Proposed Approach. The 
results for NThr=4 are displayed in this figure 

 

Figure 12 showcases our approach's capability in outdoor en-
vironments, where varying lighting and small-scale movements 
often present challenges. The sequence images #276, #317, 
#352, and #228 reveal that our approach is proficient at detecting 
prominent moving objects even against complex urban backdrops, 
though smaller or distant objects may sometimes be less accu-
rately captured, with the optimal values averaging 56.5, 107, 
178.5 and 254.5. 
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Fig. 11.  Qualitative Performance of the MOD-BFDO Approach on 

O_SU_01 (Dynamic background, camouflage, hard shadows.): 
(a) Original Image, (b) background model, (c) Ground Truth, (d) 
Proposed Approach. The results for NThr =4 are displayed in 
this figure 

 

 
Fig. 12. Qualitative performance of the MOD-BFDO approach on the 

"111" synthetic videos from the BMC2012 dataset. This figure 
shows: (a) the original image, (b) the background model, and (c) 
the results obtained with the proposed approach. The results 
displayed correspond to NThr=4 

4.2. Quantitative Measurement 

In this section, we provide a detailed quantitative evaluation of 
the MOD-BFDO method. The performance is assessed using 
various metrics that measure the accuracy and reliability of the 
detection results. These metrics offer a clear indication of how 
well the proposed approach distinguishes moving objects from the 
background in different scenarios. By comparing our results to 
existing methods, we highlight the effectiveness and robustness of 
MOD-BFDO in both controlled and complex environments. The 
following subsections provide the mathematical definitions and full 
forms of each metric used in our evaluation. 

− RE (Recall): Measures the proportion of actual positives cor-
rectly identified. 

𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where TP represents true positives and FN represents false nega-
tives 

− SP (Specificity): Represents the proportion of actual negatives 
correctly identified. 

SP =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

where TN represents true negatives and FP represents false 
positives. 

− FPR (False Positive Rate): The proportion of false positives 
among all actual negatives. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

− FNR (False Negative Rate): The proportion of false negatives 

among all actual positives. 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

− PWC (Percentage of Wrong Classifications): Indicates the 

percentage of incorrectly classified instances (false positives 

and false negatives) out of the total number of classifications. 

𝑃𝑊𝐶 = 
100 ∗ (𝐹𝑁 + 𝐹𝑃)

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

− F-M (F-Measure): The harmonic mean of precision and recall, 

providing a balance between the two 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙 
 

− PR (Precision): Measures the proportion of correctly predicted 

positives out of all predicted positives. 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

4.2.1. Quantitative evaluation using the CDnet 2014 dataset 

Table 1 shows seven evaluation metrics for our moving object 
detection approach based on background subtraction, fuzzy en-
tropy thresholding, and differential evolution optimization (MOD-
BFDO) using the CDnet 2014 dataset. Our methodology has been 
tested in various scenarios, including uniform lighting conditions, 
shadow areas, long-range scene occlusion environments, the 
presence of multiple targets, and weak signals. MOD-BFDO effec-
tively adapts to dynamic backgrounds and fast-moving objects, as 
well as slow background changes and static objects in scenes. 

Tab. 1.  Evaluation of our method on the CDnet 2014 

Category RE SP FPR FNR PWC F-M PR 

Baseline 0.9577 0.9911 0.0021 0.0423 0.3634 0.9409 0.9432 

Bad weather 0.8950 0.9970 0.0004 0.1053 0.5212 0.8834 0.8723 

Dy. Backg 0.8839 0.9989 0,0013 0,2332 0,6121 0.9051 0.9272 

Shadow 0,8704 0,9917 0,0082 0,1295 1,6663 0.8785 0,8869 

Cam. Jitter 0.8154 0,9945 0,0057 0,1864 1,2627 0.8332 0.8515 

Law. Fram 0.7610 0.9934 0.0061 0.2492 0.9064 0.6800 0.6146 

Average 0.8639 0.9944 0.0039 0.1576 0.7220 0.8535 0.8492 
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The advantages of MOD-BFDO are supported by the high 
precision, recall, F-measure and PWC scores shown in Table 2. 
Notably, MOD-BFDO shows higher recall and F-measure, as well 
as lower PWC, highlighting its ability to detect foreground and 
background pixels while minimizing errors. Compared to many 
traditional approaches, including those outside the deep learning 
domain, our method also outperforms deep learning-based mod-
els, approaching the performance of the SuBSENSE [24] algo-
rithm in terms of accuracy. 

 
Tab. 2.  Comparative assessment of F-measure in six categories using 

four methods. Each row presents results specific to each 
method; each column displays the average scores in each 
category 

 

In comparison with other ranked methods on the dataset in 
Table 3, MOD-BFDO stands out once again, especially in terms of 
F-measure scores, which combine recall and precision. Even in 
the Law framerate category, where some approaches use more 
sophisticated frame-level motion analysis techniques, our method 
excels. Overall, we maintain the highest F-measure scores in four 
out of six categories, surpassing the second-best method with an 
8.53% relative improvement in the overall F-measure, exclusively 
for the CDnet 2014 dataset. These results highlight the exception-
al flexibility of our method, capable of adapting to the most chal-
lenging change detection scenarios. 

Tab. 3. A comparison between our method and some of the most  
important existing methods on CDnet 2014 dataset 

Methods Overall 

 Avg. RE Avg. PR Avg. PCW Avg. F-M 

DeepBS [27] 0.8312 0.8712 0.6373 0. 8490 

SC_SOBS [25] 0.8068 0.7141 2.1462 0.7158 

SuBSENSE [24] 0.8615 0.8606 0.8116 0.8257 

GMM _Zivk [26] 0.7155 0.6722 1.7052 0.6696 

MOD-BFDO 0.8639 0.8492 0.72202 0.8535 

4.2.2. Statistical Stability Test 

In this part, we present a comparative analysis of the perfor-
mance of the MOD-BFDO method against other object detection 
methods, based on the mean F-measure and standard deviations 
calculated for each method. We then apply a z-test to assess the 
statistical significance of the differences between these methods. 

Tab. 4.  Mean F-measure and standard deviations for different methods 

Methods Mean F-M (µ) Standard Deviation (σ) 

MOD-BFDO 0.8535 0.0920 

SuBSENSE [24] 0.8257 0.1013 

DeepBS [27] 0.8490 0.1296 

SC_SOBS [25] 0.7158 0.1306 

GMM_Zivk [26] 0.6696 0.1232 

The standard deviation 𝜎 for each method is calculated using 
the following formula: 

𝜎 = √
1

𝑛−1
∑ (𝑋𝑖 − �̅�)

2𝑛
𝑖=1   

where: 
𝑋𝑖: is the F-measure for each category. 
�̅�: is the mean F-measure for the method. 
𝑛 : is the number of categories. 

To compare the performance of MOD-BFDO with other meth-

ods, we use the following z-test equation: 

𝑧 =
�̅�MOD−�̅�𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑

√
𝜎MOD
2

𝑛MOD
+
𝜎𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑
2

𝑛𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑

  

where:  

�̅�MOD : is the mean F-measure for MOD-BFDO. 

�̅�𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 : is the mean F-measure for the compared method. 

𝜎𝑀𝑂𝐷 and  𝜎𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 are the standard deviations of the respec-

tive methods 
𝑛MOD and 𝑛𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 are the number of samples (here n=6 for 

each method). 

Tab. 5.  Z-scores for MOD-BFDO vs other methods 

Comparison z-Score 

MOD-BFDO vs SuBSENSE 0.498 

MOD-BFDO vs DeepBS 0.069 

MOD-BFDO vs SC_SOBS 2.11 

MOD-BFDO vs GMM_Zivk 2.93 

 
The z-test was applied to assess whether the performance dif-

ferences in terms of F-measure between MOD-BFDO and the 
other methods are statistically significant at the 95% confidence 
level. For this confidence level, the critical value is 1.96, meaning 
that any z-score greater than 1.96 or less than -1.96 indicates a 
significant difference. 

The results show that the differences between MOD-BFDO 
and SuBSENSE (z = 0.498) as well as DeepBS (z = 0.069) are 
not significant, as the z-scores are below 1.96. However, the 
differences with SC_SOBS (z = 2.11) and GMM_Zivk (z = 2.93) 
are statistically significant, indicating that MOD-BFDO significantly 
outperforms these two methods at the 95% confidence level. 
These results confirm the robustness and effectiveness of MOD-
BFDO in complex environments, particularly in comparison with 
older methods such as SC_SOBS and GMM_Zivk. 

 

 

Methods 

F-M 

Baseline 
   Bad 

weather 

  Dy. 

Backg 
Shadow 

 Cam.  

 Jitter 

  Law        

Fram 
Overall 

DeepBS [27] 0.9580 0.8301 0.8761 0.9304 0.8990 0.6002 0.8490 

SC_SOBS 

[25] 
0.9333 0.6620 0.6686 0.7786 0.7051 0.5463 0.7158 

SuB-

SENSE[24] 
0.9503 0.8619 0.8177 0.8646 0.8152 0.6445 0.8257 

GMM_ 

Zivk [26] 
0.8382 0.7406 0.6328 0.7322 0.5670 0.5065 0.6696 

MOD-BFDO 0.9409 0.8834 0.9051 0.8785 0.8332 0.6800 0.8535 
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4.2.3. Quantitative evaluation using the LASIESTA dataset 

Tab. 6. Results obtained by the proposed algorithm on the LASIESTA 
dataset 

Category RE PWC F-M PR 

I_SI 0.8969 0.5501 0.9089 0.9219 

I_CA 0.7930 1.2835 0.8415 0.9250 

I_BS 0.7015 0.4164 0.7120 0.7457 

O_SU 0.8868 0.1917 0.8938 0.9038 

Average 0.8195 0.6104 0.8390 0.8741 

 

Tab. 7. Comparative assessment of F-measure across four categories 
using four methods on the LASIESTA dataset. Each row 
presents the results for a specific method, while each column 
displays the average scores for each category  

 

The results from both tables provide a comparative evaluation 
of different methods applied to the LASIESTA dataset. In Table 6, 
our proposed approach demonstrates strong performance, with an 
average F-measure of 0.8390 and high scores in categories I_SI 
(0.9089) and O_SU (0.8938), indicating robust capability in detect-
ing objects in diverse environments. In comparison, Table 7 
shows the results of other methods. Our method outperforms the 
GMM [31] and GMM_Zivkovic [26] approaches in terms of overall 
F-measure (0.8390 vs. 0.6880 and 0.7450, respectively) and 
slightly surpasses the Cuevas approach (0.8390 vs. 0.8155). This 
highlights the enhanced efficiency of our algorithm in handling 
complex and heterogeneous scenes. 

4.2.4. Real-time assessment 

In this section, we compare the average frames per second 
(FPS) across several algorithms using videos from the SBI2015, 
CDnet 2014 and LASIESTA datasets. To assess processing 
speed, we selected four videos with resolutions of (320x240, 
352x288 and 720x480). All videos were recorded at 25 fps, and 
frames were converted to grayscale before applying the algo-
rithms. Table V summarizes the average FPS results obtained on 
our system, equipped with an Intel(R) Core (TM) i7-4700MQ CPU 
@ 2.40GHz and implemented in C++. 

For real-time applications, GMM_Zivkovic [26] emerges as the 
most suitable method due to its high FPS performance. MOD-
BFDO offers a balanced alternative, providing a compromise 
between speed and accuracy. On the other hand, SC_SOBS [25] 
and SuBSENSE show lower FPS, especially for larger videos, 
which makes them less ideal for real-time scenarios involving 
high-resolution content. 
 

Tab. 8.  Comparison of Average Frames Per Second (FPS) Across Three 
Source Video Sequences 

 

Methods 

Size of video 

320x240 352x288 720x480 

SC_SOBS [25] 9.8 8.7 3.4 

SuBSENSE [24] 3.3 2.8 1.6 

GMM _Zivk [26] 21.6 18.1 13.8 

MOD-BFDO 5.5 4.7 3.2 

5. CONCLUSION  

In conclusion, our experimental results conclusively demon-
strate that our MOD-BFDO method represents a significant ad-
vance in detecting moving objects in videos. Compared to object 
detection algorithms, whether based on deep learning or not, our 
approach stands out for its ability to provide superior performance, 
especially in difficult conditions such as lighting variations, long 
ranges, baseline changes, and other complex scenarios. 

The innovative combination of background subtraction, fuzzy 
entropy-based multi-level image thresholding, and differential 
evolution algorithm achieved remarkable results. Background 
subtraction provides a crucial first step to isolating moving objects, 
while multi-level image thresholding based on fuzzy entropy im-
proves robustness to environmental variations. 

The optimization of the fuzzy entropy threshold parameters by 
the differential evolution algorithm was instrumental in obtaining 
superior performance. This iterative approach made it possible to 
maximize the detection of moving objects, while minimizing false 
positives, thus strengthening the precision and reliability of our 
method. 

In summary, the results of our experiments position our MOD-
BFDO method as a promising and competitive solutions for de-
tecting moving objects. These advances open up exciting pro-
spects for applying our method in areas such as surveillance, 
robotics, and computer vision, demonstrating its potential to ad-
dress the complex challenges of detecting moving objects in 
dynamic and varied environments. 
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