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Abstract: Dual assessing for thermal analysis via nanoparticles (aluminium oxide and titanium dioxide) and base fluids (water and blood) 
for mixed convection flows over an inclined plate is studied. The governing equations have been developed through fractional formats  
by exploiting modern definitions of CF (based on exponential function having no singularity) and AB (having non-singular and non-local 
kernel) fractional derivatives. This is an important theoretical and practical research that models the movement of heat in materials of various 
scales and heterogeneous media. The solution to the problem is achieved through Laplace transform with slip boundary and magnetic field.  
To explain the physical perception of fractional models, the dual fractional solutions of velocity field and temperature distribution are derived 
by comparing non-singularity and non-locality. The fractional solutions through numerical methods namely Stehfest and Tzou’s have been 
invoked. The embedded thermo-dynamical fluctuating parameters have been traced out for the better performance of heat transfer.  
The results of temperature as well as velocity suggested decaying trends in characterization with rapid thermal analysis. 

Keywords: Non-singularized derivative, Mixed convection flow with nanoparticles, Heat transfer of inclined plate, Integral transforms 

1. INTRODUCTION 

The applications of free convection flow are perceived in many 
fields of engineering and science such as heat exchangers, solar 
energy, drying processes, electric components of communication 
lines, and thermal storage systems. Several of its applications are 
also found in conservation, ventilation systems, dehydration, con-
centration, etc. These forms of flow are frequently inspected with a 
vertical plate in various manufacturing developments i.e., petro-
leum industry, geothermal phenomena, thermal insulation, etc. The 
free convection MHD flow with permeable plate by the AB deriva-
tives along with integral transform is studied in [1]. In [2], free con-
vection with NF in the presence of a magnetic field is deliberated 
by utilizing a fractional approach. A mathematical study with NFs 
with radiation impact is studied in [3]. A natural convection fluid flow 
with a long and vertical cylinder is considered in [4]. They studied 
the impacts of energy as well as mass transfer with time. Different 
investigators applied various techniques to study convection fluid 
flow with diverse structures [5-11]. 

Firstly, Choi presented NFs comprising nanoparticles in 1995. 
There are numerous uses of NFs in many fields for example fluid 
dynamics, in many engineering branches, and biomedical fields. 
NFs are considered the most excellent alternate ways to usual flu-
ids [12-14]. The small particles in the base fluid which progress the 
competency of the characteristics of NFs for minimizing the system 
are known as nanoparticles and the key purpose of NFs is to realize 
the extreme possible heat conduction at a short nanoparticle con-
centration. The main conclusions have been distinguished because 
of the chemical configuration of the nanoparticles when are jumped 
in the base liquid i.e., reduced possibilities of erosion, thermal 

transmission, and solidity of the combination. These features play 
an exceptional part in increasing thermal transmission and energy 
proficiency in several fields i.e. biomedical instruments, microelec-
tronics, and power generation [15]. Mud nanoparticles consume 
many practical uses in the penetrating of gasses and oil liquids be-
cause of their thermal conduction expressively. The growth of na-
noparticles increases the thermal conduction and viscosity of NFs 
that oppose the intensifying temperature. Currently, because of 
their extensive uses in many branches of science and technology, 
NFs are now a fascinating and dominant field for research in fluid 
mechanics. The impacts of volume fraction and natural convection 
flow with NFs along with fractional calculus are studied in [16]. A 
viscous flow with NF (Titania-sodium cellulose) was discussed in 
[17]. To inspect and enhance the performance of solar accumula-
tors exploited the NFs were studied by Farhana et al. [18]. Jamshed 
et al. [19-24] applied different techniques to study Eyring NF, Cas-
son NF, second-grade NF, Williamson hybrid NF and tetra hybrid 
binary NF in different channels. Many researchers applied various 
methods to study NF flow models with diverse constructions [25-
31].  

In 1695 [32], firstly, the concept of fractional derivative was 
given by Leibnitz and L’Hospital which is a proficient tool related  
to memory facts. Memory function narrates to the kernel of the time-
fractional derivative that has not simulated a physical development.  
Fractional calculus deals with non-local differentiation and integra-
tion [33]. The numerical solution of a fractional Oldroyd B-fluid  
is achieved by the modified Bessel equation as well as the Laplace 
method [34]. They showed that shear stress is improved as  
dynamic viscosity is increased. Fractional derivatives are most suit-
able to the problems of physical nature i.e., earth quick vibrations,  
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polymers, viscoelasticity, heat transfer problems, fluid flows, etc. 
Over time, various algorithms and definitions were determined by 
different mathematicians. To find the solution to various mathemat-
ical models, the researchers used different fractional derivatives 
i.e., Riemann-Liouville, Caputo, CF, and AB derivatives. Fractional 
models can define more proficiently the consequences of the real 
nature of world problems such as electromagnetic theory, diffusive 
transfer, electrical networks, fluid flows, rheology, and viscoelastic 
materials. Then due to a few complications and limitations, Caputo 
and Fabrizio proposed the latest non-integer order model named 
CF fractional derivative along with an exponential and non-singular 
kernel [35-39].  

According to the author’s knowledge, there is no investigation 
on the study of mixed convection flow with  𝐴𝑙2𝑂3 and 𝑇𝑖𝑂2  nano-
particles with water and blood-based NF in several situations which 
is a significant theoretical and practical study for the solution of im-
portant problems based on the fractional derivative. By getting mo-
tivation from these facts, our main purpose is to study a mixed con-
vection flow with  𝐴𝑙2𝑂3  and 𝑇𝑖𝑂2 nanoparticles with water and 
blood-based NF along with new definitions of fractional derivatives 
i.e., AB and CF fractional operators. A semi-analytical approach for 
AB and CF-based fractional models is applied by the Laplace trans-
form technique along with Stehfest and Tzou’s numerical schemes. 
To improve the novelty of the recent work some particular cases of 
velocity profile are also deliberated whose physical importance is 
prominent in the literature. The graphical illustration for the under-
discussed mathematical problem by changing diverse flow param-
eters is underlined. 

2. CHAPTER TITLE 

We assume that a mixed convection fluid flow 
with 𝐴𝑙2𝑂3 and 𝑇𝑖𝑂2  nanoparticles are flowing over an inclined 
plate with an inclination angle  𝛿 with the 𝑥-axis. Initially, when 𝑡 =
0, the plate, as well as the fluid, is at rest and ambient medium 
temperature 𝑇∞. When 𝑡 = 0+, the plate moves by a constant 

value of velocity  
𝑔(𝑡)

𝜇
   where 𝑔(0) = 0, and temperature in-

creases from 𝑇∞ to 𝑇𝑤 . By this motion of the plate, the fluid begins 
to move over the plate. Along with all these conditions, it is also 
supposed the slip impacts the boundaries of the plate. A magnetic 
field with an angle, 𝜃 is also utilized upon the plate as revealed in 
Fig 1.  

 
Fig 1. Geometry of the problem 

We suppose the characteristics of the physical nanoparticles 
are from Table 1. The fluid velocity as well as the temperature de-
pends on 𝜉 and 𝑡. With Boussinesq’s approximation and in the ab-
sence of pressure gradient [7, 45], the governing equations are: 

Momentum Equation: 

𝜌𝑛𝑓
𝜕𝑤(𝜉,𝑡)

𝜕𝑡
= 𝜇𝑛𝑓 (1 + 𝛼1

𝜕

𝜕𝑡
)

𝜕2𝑤(𝜉,𝑡)

𝜕𝜉2 +

𝑔(𝜌𝛽𝑇 )𝑛𝑓[𝑇(𝜉, 𝑡) − 𝑇∞]𝐶𝑜𝑠𝛿 − 𝜎𝑛𝑓𝐵𝑜
2𝑆𝑖𝑛𝜃 𝑤(𝜉, 𝑡);  𝜉, 𝑡 >

0.                                                                                                       (1) 

The thermal balance Equation: 

(𝜌𝐶𝑝)
𝑛𝑓

𝜕𝑇(𝜉,𝑡)

𝜕𝑡
= −

𝜕𝑞1

𝜕𝜉
;          𝜉, 𝑡 > 0.                                    (2) 

Fourier law [9]: 

𝑞1(𝜉, 𝑡) = −𝑘𝑛𝑓
𝜕𝑇(𝜉,𝑡)

𝜕𝜉
                                                                (3) 

with the appropriate initial and boundary conditions 

𝑤(𝜉, 0) = 0,        𝑇(𝜉, 0) = 𝑇∞;  𝜉 > 0,                                    (4) 

𝑤(0, 𝑡) − 𝑏
𝜕𝑤(𝜉,𝑡)

𝜕𝜉
|

𝜉=0
=

𝑔(𝑡)

𝜇
,        𝑇(0, 𝑡) = 𝑇𝑤;  𝑡 > 0     (5) 

𝑤(𝜉, 𝑡) → 0,        𝑇(𝜉, 𝑡) → 𝑇∞;       𝜉 → ∞, 𝑡 > 0                  (6) 

The appropriate non-dimensional parameters are taken as  

𝜉∗ =
𝜉𝜈𝑜

𝜐𝑓
,    𝑤∗ =

𝑤

𝑈𝑜
,     𝑡∗ =

𝜈𝑜
2𝑡

𝜐𝑓
,      𝜗∗ =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 

𝑏∗ =
ℎ

𝑘
𝑏,      𝑞∗ =

𝑞

𝑞𝑜
,     𝑞𝑜 =

𝑘𝑛𝑓(𝑇𝑤−𝑇∞)𝜈𝑜

𝜐𝑓
, 𝑔∗(𝑡∗) =

1

𝜇
√

𝑡𝑜

𝜐
𝑓(𝑡𝑜𝑡∗).                                                                            (7) 

By using the above non-dimensional parameters in Eq. (7), the 
governing Eqs. (1)-(3) and equivalent conditions (4)-(6) take the 
form as 

𝜕𝑤(𝜉,𝑡)

𝜕𝑡
=

1

Λ𝑜Λ1
(1 + β1

𝜕

𝜕𝑡
)

𝜕2𝑤(𝜉,𝑡)

𝜕𝜉2 +
Λ2

Λ𝑜
𝐺𝑟 𝜗(𝜉, 𝑡)𝐶𝑜𝑠𝛿 −

1

Λ𝑜
𝑀 𝑆𝑖𝑛𝜃 𝑤(𝜉, 𝑡),                                                                       (8) 

Λ3𝑃𝑟
𝜕𝜗(𝜉,𝑡)

𝜕𝑡
= − 

𝜕𝑞(𝜉,𝑡)

𝜕𝜉
;  𝜉, 𝑡 > 0,                                          (9) 

𝑞(𝜉, 𝑡) = −Λ4
𝜕𝜗(𝜉,𝑡)

𝜕𝜉
,                                                                (10) 

along with corresponding conditions 

𝑤(𝜉, 0) = 0,        𝜗(𝜉, 0) = 0;  𝜉 > 0                                       (11) 

𝑤(0, 𝑡) − 𝑏
𝜕𝑤(𝜉,𝑡)

𝜕𝜉
|

𝜉=0
= 𝑔(𝑡),     𝜗(0, 𝑡) = 1;  𝑡 > 0,       (12) 

𝑤(𝜉, 𝑡) → 0,        𝜗(𝜉, 𝑡) → 0;  𝜉 → ∞, 𝑡 > 0                     (13) 

where: 

𝜌𝑛𝑓 = (1 − 𝜑)𝜌𝑓 + 𝜑𝜌𝑠 ,   𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)2.5, 

(𝜌𝛽)𝑛𝑓 = (1 − 𝜑)(𝜌𝛽)𝑓 + 𝜑(𝜌𝛽)𝑠 ,       (𝜌𝐶𝑝)
𝑛𝑓

=

(1 − 𝜑)(𝜌𝐶𝑝)
𝑓

+ 𝜑(𝜌𝐶𝑝)
𝑠
,   
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𝑘𝑛𝑓

𝑘𝑓
=

𝑘𝑠+2𝑘𝑓−2𝜑(𝑘𝑓−𝑘𝑠)

𝑘𝑠+2𝑘𝑓+2𝜑(𝑘𝑓−𝑘𝑠)
,      

𝜎𝑛𝑓

𝜎𝑓
= 1 + {3 (

𝜎𝑠

𝜎𝑓
−

1) 𝜑} {(
𝜎𝑠

𝜎𝑓
+ 2) − (

𝜎𝑠

𝜎𝑓
− 1) 𝜑}

−1

,   

Λ𝑜 = (1 − 𝜑) + 𝜑
𝜌𝑠

𝜌𝑓
 ,       Λ1 =

1

(1−𝜑)2.5  ,         Λ2 =

(1 − 𝜑) + 𝜑
(𝜌𝛽𝑇)𝑠

(𝜌𝛽𝑇)𝑓
,  

Λ3 = (1 − 𝜑) + 𝜑
(𝜌𝐶𝑝)

𝑠

(𝜌𝐶𝑝)
𝑓

 ,       Λ4 =
𝑘𝑛𝑓

𝑘𝑓
,      𝑃𝑟 =

(𝜇𝐶𝑝)
𝑓

𝑘𝑓
,  

𝐺𝑟 =
𝑔(𝛽𝜈)𝑓(𝑇𝑤−𝑇∞)

𝑈𝑜
3 , 𝑀 = (

𝜐𝑓

𝜈𝑜
)

2 𝜎𝑛𝑓𝐵𝑜
2

𝜌𝑓𝜐𝑓
,    𝛽1 = 𝛼1𝜐𝑓 (

𝜐𝑓

𝜈𝑜
)

2

.     

Tab. 1.  Thermophysical characteristics of base fluids (water and blood)   
and nanoparticles [6,38]. 

Material 𝑯𝟐𝑶 Blood 𝑨𝒍𝟐𝑶𝟑 𝑻𝒊𝑶𝟐 

𝝆(𝒌𝒈𝒎−𝟑) 997.1 1053 1600 4250 

𝑪𝒑(𝒌𝒈−𝟏𝒌−𝟏) 0.4179 3594 796 686.2 

𝑲(𝑾𝒎−𝟏𝒌−𝟏) 0.613 0.492 3000 8.9528 

𝑩𝑻 × 𝟏𝟎−𝟓(𝒌−𝟏) 21 0.18 44 0.90 

2.1. Formulation of governing equations by using non-
singular kernels  

To formulate the fractional model recent proposed definitions of 
fractional derivatives i.e., AB and CF derivatives. The AB derivative 
of order 0< 𝛽 < 1 is defined as [41] 

𝔇𝑡
𝛽

 
𝐴𝐵   h(𝑡) =

1

Γ(1−𝛽)
∫ 𝐸𝛽 (

𝛽(𝑡−ε)𝛽

(𝑡−ε)
)

𝑡

0
ℎ′(𝑡)𝑑ε;  0 < 𝛽 < 1           

(14)    

and 𝐸𝛽(𝑧) is a Mittage-Leffler function defined by  

𝐸𝛽(𝑧) = ∑
𝑧𝛽

Γ(𝑟𝛽+1)
;  0 <  𝛽 < 1, 𝑧 ∈ ℂ∞

𝑟=0 . 

The Laplace transform for the AB derivative is [42] 

ℒ{ 𝔇𝑡
𝛽

 
𝐴𝐵 𝑔(𝜉, 𝑡)} =

𝑞𝛽ℒ[𝑔(𝜉,𝑡)]−𝑞𝛽−1𝑔(𝜉,0)

(1−𝛽)𝑞𝛽+𝛽
                               (15) 

with 

Lim
𝛽→1

𝔇𝑡
𝛽

 
𝐴𝐵 𝑔(𝜉, 𝑡) =

𝜕𝑔(𝜉,𝑡)

𝜕𝑡
. 

The CF derivative of order 0< 𝛼 < 1 is defined as [37,43] 

𝔇𝑡
𝛼

 
𝐶𝐹 ℎ(𝑡) =

1

Γ(1− 𝛼)
∫ 𝐸𝑥𝑝 (

𝛽(𝑡−ε)𝛽

(𝑡−ε)
) ℎ′(𝑡)𝑑ε

𝑡

0
, 0 <  𝛼 < 1,       

                                                                                                   (16) 

The Laplace transform for the CF derivative is [27,38] 

ℒ{ 𝔇𝑡
𝛼

 
𝐶𝐹 𝑔(𝜉, 𝑡)} =

𝑞ℒ[𝑔(𝜉,𝑡)]−𝑔(𝜉,0)

(1−𝛼)𝑞+𝛼
                                            (17) 

with 

Lim
𝛼→1

𝔇𝑡
𝛼

 
𝐶𝐹 𝑔(𝜉, 𝑡) =

𝜕𝑔(𝜉,𝑡)

𝜕𝑡
. 

It is important to note that AB and CF fractional operators can 
also be extended significantly by letting 𝛽 = 1 in Eq. (14) and 𝛼 =
1 in Eq.  (16) respectively. 

The limitation of fractional parameters in derivatives, such as 
the AB and CF derivatives, to the interval (0,1) derives from their 
interpretation and physical significance of these values. This range 
permits for a smooth transition across integer-order derivatives, re-
cording abnormalities as well as long-memory effects in processes, 
making it ideal for modelling phenomena using sub-diffusive behav-
iour as well as memory-dependent dynamics in fields such as time 
series analysis, signal processing, and anomalous diffusion. 

3. MODEL OF NANOFLUID WITH AB DERIVATIVE  

The model to the problem with AB derivative can be expressed 
by substituting the ordinary derivative with AB derivative operator in 
Eqs. (8)-(10), we get 

 

𝔇𝑡
𝛽

 
𝐴𝐵 𝑤(𝜉, 𝑡) =

1

Λ𝑜Λ1
(1 + β1 𝔇𝑡

𝛽
 

𝐴𝐵 )
𝜕2𝑤(𝜉,𝑡)

𝜕𝜉2 +

Λ2

Λ𝑜
𝐺𝑟 𝜗(𝜉, 𝑡)𝐶𝑜𝑠𝛿 −

1

Λ𝑜
𝑀 𝑆𝑖𝑛𝜃 𝑤(𝜉, 𝑡),                                (18) 

Λ3𝑃𝑟 𝔇𝑡
𝛽

 
𝐴𝐵 𝜗(𝜉, 𝑡) = − 

𝜕𝑞(𝜉,𝑡)

𝜕𝜉
;  𝜉, 𝑡 > 0,                               (19) 

𝑞(𝜉, 𝑡) = −Λ4
𝜕𝜗(𝜉,𝑡)

𝜕𝜉
.                                                               (20) 

3.1. Temperature with ab derivative  

By employing the Laplace transform on Eqs. (19) and (20), we 
get 

𝜕2�̅�(𝜉,𝑞)

𝜕𝜉2 −
Λ3𝑃𝑟

Λ4
(

𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽
) �̅�(𝜉, 𝑞) = 0,                                   

(21) 

where �̅�(𝜉, 𝑞) is the Laplace transform for 𝜗(𝜉, 𝑡), and the trans-
formed conditions after Laplace transform are as follows 

�̅�(𝜉, 𝑞) =
1

𝑞
  

and      �̅�(𝜉, 𝑞) → 0  as  𝜉 → ∞.                                               (22) 

With the above conditions of Eq. (22), we get the temperature 
as 

�̅�(𝜉, 𝑞) =
1

𝑞 
𝑒

−𝜉√   
Λ3𝑃𝑟

Λ4
(

𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽
).

                                          (23) 

Eq (23) can be written as 
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�̅�(𝜉, 𝑞) =
1

𝑞 
𝑒

−𝜉√   
𝑐1 𝑞𝛾

𝑞𝛾+𝑐2                                                              (24) 

where: 

𝑐1 =
Λ3𝑃𝑟 𝛾

Λ4
,       𝑐2 = 𝛽𝛾,        𝛾 =

1

1−𝛽
. 

Eq (24) can also be written in summation form as 

�̅�(𝜉, 𝑞) =
1

𝑞
+ ∑ ∑

(−𝜉√𝑐1)𝑎1

𝑎1!

(−𝑐2)𝑎2

𝑞1+𝑎2 𝛽

Γ(
𝑎1
2

+𝑎2)

Γ(
𝑎1
2

)Γ(𝑎2+1)

∞
𝑎2=0

∞
𝑎1=1       

                                                                                                   (25) 

By taking the Laplace inverse of Eq. (25), we have 

𝜗(𝜉, 𝑡) = 1 + ∑ ∑
(−𝜉√𝑐1)𝑎1

𝑎1!

Γ(
𝑎1
2

+𝑎2)

Γ(
𝑎1
2

)Γ(𝑎2+1)

(−𝑐2)𝑎2  𝑡𝑎2𝛽

Γ(1+𝑎2𝛽)
∞
𝑎2=0

∞
𝑎1=1     

                                                                                                   (26) 

When 𝛽 → 1, Eq. (26) becomes 

𝜗(𝜉, 𝑡) =
𝜉(1−𝑒𝑟𝑓(

|𝜉|√Λ3𝑃𝑟

2√Λ4𝑡
))

|𝜉|
;        𝜉, √

Λ3𝑃𝑟

Λ4
> 0.                       (27) 

3.2.    Velocity with ab derivative  

By using the Laplace transform on Eq. (18), we get 

(
 𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽
) �̅�(𝜉, 𝑞) =

1

Λ𝑜Λ1
(1 + β1

 𝑞𝛽

(1−𝛽)𝑞𝛽+𝛽
)

𝜕2�̅�(𝜉,𝑞)

𝜕𝜉2 +

Λ2

Λ𝑜
𝐺𝑟 𝐶𝑜𝑠𝛿 �̅�(𝜉, 𝑞) −

1

Λ𝑜
𝑀 𝑆𝑖𝑛𝜃 �̅�(𝜉, 𝑞) (28) 

with the corresponding conditions 

�̅�(0, 𝑞) − 𝑏
𝜕�̅�(𝜉,𝑞)

𝜕𝜉
|

𝜉=0
= 𝐺(𝑞)       

and         

�̅�(𝜉, 𝑞) → 0    𝑎𝑠    𝜉 → ∞. (29) 

Eq (28) is solved by utilizing Eq. (29) and we get 

�̅�(𝜉, 𝑞) =
1

1+𝑏√ 
Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

  

(
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)−

Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀 𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

 (1 +

𝑏√   
Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)) + 𝐺(𝑞)) 𝑒

−𝜉√ 
Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀 𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾
   

−
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)−

Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀 𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

 𝑒
−𝜉√ 

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)

 .       

                                                                                                   (30) 

When 𝛽 → 1, Eq. (30) becomes 

�̅�(𝜉, 𝑞) =

1

1+𝑏√ 
Λ𝑜Λ1𝑞+Λ1𝑀 𝑆𝑖𝑛𝜃

1+𝛽1𝑞

(
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1
Λ3𝑃𝑟

Λ4
𝑞−

Λ𝑜Λ1𝑞+Λ1𝑀 𝑆𝑖𝑛𝜃

1+𝛽1𝑞

 (1 +

𝑏√   
Λ3𝑃𝑟

Λ4
𝑞) + 𝐺(𝑞)) 𝑒

−𝜉√ 
Λ𝑜Λ1𝑞+Λ1𝑀 𝑆𝑖𝑛𝜃

1+𝛽1𝑞 −

Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1
Λ3𝑃𝑟

Λ4
𝑞−

Λ𝑜Λ1𝑞+Λ1𝑀 𝑆𝑖𝑛𝜃

1+𝛽1𝑞

 𝑒
−𝜉√ 

Λ3𝑃𝑟

Λ4
𝑞

                                 (31) 

The Laplace inverse of these solutions is determined numeri-
cally through Stehfest as well as Tzou’s approaches as in Tables 
2-3. 

4. MODEL OF NANOFLUID WITH CF DERIVATIVE 

In the above section, the temperature, as well as velocity, is 
determined by using the AB-fractional derivative, now the modelling 
of governing equations by CF-fractional derivative may be ex-
pressed by replacing the ordinary derivative with CF-fractional de-
rivative operative 𝔇𝑡

𝛼
 

𝐶𝐹 , the governing equations for the CF-frac-
tional derivative model are attained as 

𝔇𝑡
𝛼

 
𝐶𝐹 𝑤(𝜉, 𝑡) =

1

Λ𝑜Λ1
(1 + β1 𝔇𝑡

𝛼
 

𝐶𝐹 )
𝜕2𝑤(𝜉,𝑡)

𝜕𝜉2 +

Λ2

Λ𝑜
𝐺𝑟 𝜗(𝜉, 𝑡)𝐶𝑜𝑠𝛿 −

1

Λ𝑜
𝑀 𝑆𝑖𝑛𝜃 𝑤(𝜉, 𝑡),                                  (32) 

Λ3𝑃𝑟 𝔇𝑡
𝛼

 
𝐶𝐹 𝜗(𝜉, 𝑡) = − 

𝜕𝑞(𝜉,𝑡)

𝜕𝜉
;          𝜉, 𝑡 > 0,                       (33) 

𝑞(𝜉, 𝑡) = −Λ4
𝜕𝜗(𝜉,𝑡)

𝜕𝜉
.                                                               (34) 

4.1.    Temperature with cf derivative 

By taking Laplace transform on Eqs. (33), and (34), we get 

𝜕2�̅�(𝜉,𝑞)

𝜕𝜉2 −
Λ3𝑃𝑟

Λ4
(

𝑞

(1−𝛼)𝑞+𝛼
) �̅�(𝜉, 𝑞) = 0.                                 (35) 

By using the corresponding conditions of Eq. (22), the solution 
of Eq. (35) is 

�̅�(𝜉, 𝑞) =
1

𝑞 
𝑒

−𝜉√   
Λ3𝑃𝑟

Λ4
(

𝑞

(1−𝛼)𝑞+𝛼
).

                                             (36) 

Eq (36) can be written as 

�̅�(𝜉, 𝑞) =
1

𝑞
𝑒

−𝜉√   
𝑑1𝑞

𝑞+𝑑2                                                              (37) 
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Where 

𝑑1 =
Λ3𝑃𝑟 𝛾

Λ4
,       𝑑2 = 𝛼𝛾,        𝛾 =

1

1−𝛼
  

Eq (37) may be written in summation form as 

�̅�(𝜉, 𝑞) =
1

𝑞
+ ∑ ∑

(−𝜉√𝑑1)
𝑎1

𝑎1!

(−𝑑2)𝑎2

𝑞1+𝑎2

Γ(
𝑎1
2

+𝑎2)

Γ(
𝑎1
2

)Γ(𝑎2+1)

∞
𝑎2=0

∞
𝑎1=1  (38) 

By utilizing the Laplace inverse of Eq. (38), we have 

𝜗(𝜉, 𝑡) = 1 + ∑ ∑
(−𝜉√𝑑1)

𝑎1

𝑎1!

(−𝑑2)𝑎2   𝑡𝑎2

Γ(𝑎2+1)

Γ(
𝑎1
2

+𝑎2)

Γ(
𝑎1
2

)Γ(𝑎2+1)

∞
𝑎2=0

∞
𝑎1=1      

                                                                                                      (39) 

For the special case for ordinary solution replace 𝛼 → 1 in Eq 
(39), and then the solution will be 

𝜗(𝜉, 𝑡) =
𝜉(1−𝑒𝑟𝑓(

|𝜉|√Λ3𝑃𝑟

2√Λ4𝑡
))

|𝜉|
 ;  𝜉, √

Λ3𝑃𝑟

Λ4
> 0.                            (40) 

4.2. Velocity with cf derivative 

By using the Laplace transform on Eqs. (32), we get 

(
𝑠

(1−𝛼)𝑠+𝛼
) �̅�(𝜉, 𝑠) =

1

Λ𝑜Λ1
(1 + β1 (

𝑠

(1−𝛼)𝑠+𝛼
))

𝜕2�̅�(𝜉,𝑠)

𝜕𝜉2 +

Λ2

Λ𝑜
𝐺𝑟 �̅�(𝜉, 𝑠)𝐶𝑜𝑠𝛿 −

1

Λ𝑜
𝑀 𝑆𝑖𝑛𝜃�̅�(𝜉, 𝑠).                                (41) 

By solving Eq (41) with the corresponding conditions in Eq. 
(29), we get 

�̅�(𝜉, 𝑞) =
1

1+𝑏√ 
Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀 𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

  

(
Λ2𝐺𝑟  𝐶𝑜𝑠𝛿

Λ𝑜𝑠
  

1
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)−

Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀 𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

 (1 +

𝑏√   
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)) + 𝐺(𝑞)) 𝑒

−𝜉√ 
Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀 𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾   

−
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)−

Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀 𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

 𝑒
−𝜉√ 

Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
).

      

                                                                                                      (42) 

When 𝛼 → 1, Eq. (42) becomes 

�̅�(𝜉, 𝑞) =

1

1+𝑏√ 
Λ𝑜Λ1𝑞+Λ1𝑀 𝑆𝑖𝑛𝜃

1+𝛽1𝑞

 (
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1
Λ3𝑃𝑟

Λ4
𝑞−

Λ𝑜Λ1𝑞+Λ1𝑀 𝑆𝑖𝑛𝜃

1+𝛽1𝑞

 (1 +

𝑏√   
Λ3𝑃𝑟

Λ4
𝑞) + 𝐺(𝑞)) 𝑒

−𝜉√ 
Λ𝑜Λ1𝑞+Λ1𝑀 𝑆𝑖𝑛𝜃

1+𝛽1𝑞 −

Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1
Λ3𝑃𝑟

Λ4
𝑞−

Λ𝑜Λ1𝑞+Λ1𝑀 𝑆𝑖𝑛𝜃

1+𝛽1𝑞

 𝑒
−𝜉√ 

Λ3𝑃𝑟

Λ4
𝑞

.                            (43) 

To find out the Laplace inverse, various researchers applied 
different numerical approaches to find the solution of diverse differ-
ential fractional models as in [44-47]. Consequently, here we will 
also utilize the Stehfest scheme to find the numerical solution of 
temperature as well as velocity numerically. Grave Stehfest 
scheme [48] can be expressed as 

𝑤(𝜉, 𝑡) =
𝑙𝑛(2)

𝑡
 ∑ 𝑣𝑛  𝑤 (𝜉, 𝑛

𝑙𝑛(2)

𝑡
)𝑀

𝑛=1                                     (44) 

where 𝑀 be a non-negative integer, and 

𝑣𝑛 = (−1)𝑛+
𝑀

2 ∑
𝑝

𝑀
2  (2𝑝)!

(
𝑀

2
−𝑝)!𝑝! (𝑝−1)! (𝑞−𝑝)! (2𝑝−𝑞)!

𝑚𝑖𝑛(𝑞,
𝑀

2
)

𝑝=[
𝑞+1

2
]

          (45) 

However, we also applied another estimation for temperature 
as well as velocity solutions, Tzou’s method for the comparison and 
validation of our numerical findings with the Stehfest [48] scheme. 
Tzou’s scheme [49] has the form as 

𝑤(𝜉, 𝑡) =
𝑒4.7

𝑡
 [

1

2
�̅� (𝑟,

4.7

𝑡
) +

𝑅𝑒 {∑ (−1)𝑘  𝑤 (𝑟,
4.7+𝑘𝜋𝑖

𝑡
)𝑁

𝑗=1 }]                                            (46) 

where 𝑖  and 𝑅𝑒(. ) are imaginary units and real portions and 𝑁 >
1 is a natural number. 

5. PARTICULAR CASES 

As the solution of the velocity field with AB and CF derivative in 
Eq. (30) and (42) correspondingly, is in a more general form. Con-
sequently, to demonstrate some more physical perception of the 
problem, we will deliberate some particular cases for the func-
tion 𝑔(𝑡) for the velocity whose physical explanation is prominent 
in the literature. 
Case 1: 𝒈(𝒕) = 𝒕 

In this case, we take 𝑔(𝑡) = 𝑡 then the expressions of velocity 
with AB and CF derivative along with Eqs. (30) and (42) respec-
tively will take the form as 

�̅�(𝜉, 𝑞) =
1

1+𝑏√ 
Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

, 

(
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)−

Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

 (1 +

𝑏√   
Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)) +

1

𝑞2
) 𝑒

−𝜉√ 
Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾  

−
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)−

Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

 𝑒
−𝜉√ 

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)

  

                                                                                             (47) 
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and  �̅�(𝜉, 𝑞) =
1

1+𝑏√ 
Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

 

(
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)−

Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

 (1 +

𝑏√   
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)) +

1

𝑞2) 𝑒
−𝜉√ 

Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾   

−
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑠
  

1
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)−

Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

 𝑒
−𝜉√ 

Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)
.  

                                                                                                   (48) 

Case 2: 𝒈(𝒕) = 𝑺𝒊𝒏(𝝎𝒕) 

In this case, we take 𝑔(𝑡) = 𝑆𝑖𝑛(𝜔𝑡) where 𝜔 denotes the 
intensity of the shear stress, then the expressions for velocity with 
AB and CF derivative with Eqs. (30) and (42) correspondingly will 
take the form as 

�̅�(𝜉, 𝑞) =
1

1+𝑏√ 
Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

 

(
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)−

Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

 (1 +

𝑏√   
Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)) +

𝜔

𝜔2+𝑞2
) 𝑒

−𝜉√ 
Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾   

−
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)−

Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

 𝑒
−𝜉√ 

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)
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and 

�̅�(𝜉, 𝑞) =
1

1+𝑏√ 
Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

  

(
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)−

Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

 (1 +

𝑏√   
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)) +

𝜔

𝜔2+𝑞2) 𝑒
−𝜉√ 

Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾   

−
Λ2𝐺 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)−

Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

 𝑒
−𝜉√ 

Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)
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Case 3: 𝒈(𝒕) = 𝒕 𝑪𝒐𝒔(𝒕) 
In this case, we take 𝑔(𝑡) = 𝑡 𝐶𝑜𝑠𝑡 with its Laplace 𝐺(𝑞) =

𝑞2−1

(𝑞2+1)2, then the expressions of velocity through AB and CF deriv-

ative along with Eqs. (30) and (42) correspondingly will take the 
form as 

�̅�(𝜉, 𝑞) =
1

1+𝑏√ 
Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

  

(
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)−

Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

 (1 +

𝑏√   
Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)) +

𝑞2−1

(1+𝑞2)2
) 𝑒

−𝜉√ 
Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾   

−
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)−

Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

 𝑒
−𝜉√ 

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)
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and 

�̅�(𝜉, 𝑞) =
1

1+𝑏√ 
Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

  

(
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)−

Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

 (1 +

𝑏√   
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)) +

𝑞2−1

(1+𝑞2)2) 𝑒
−𝜉√ 

Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾   

−
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)−

Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

 𝑒
−𝜉√ 

Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)
 .    

                                                                                                   (52) 

Case 4: 𝒈(𝒕) = 𝒕 𝒆𝒕 

In the final case, we take 𝑔(𝑡) = 𝑡𝑒𝑡 with its Laplace 𝐺(𝑞) =
1

(𝑞−1)2, then the expressions of velocity through AB and CF deriva-

tive along with Eqs. (30), and (42) correspondingly will take the form 
as 

�̅�(𝜉, 𝑞) =
1

1+𝑏√ 
Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

  

(
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)−

Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

 (1 +

𝑏√   
Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)) +

1

(𝑞−1)2
) 𝑒

−𝜉√ 
Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾    

−
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)−

Λ𝑜Λ1𝛾𝑞𝛽+(𝑞𝛽+𝛽𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞𝛽+𝛽𝛾+𝛽1𝑞𝛽𝛾

 𝑒
−𝜉√ 

Λ3𝑃𝑟

Λ4
(

𝑞𝛽𝛾

𝑞𝛽+𝛽𝛾
)
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and  �̅�(𝜉, 𝑞) =
1

1+𝑏√ 
Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

  

(
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)−

Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

 (1 +

𝑏√   
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)) +

1

(𝑞−1)2) 𝑒
−𝜉√ 

Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾   

−
Λ2𝐺𝑟 𝐶𝑜𝑠𝛿

Λ𝑜𝑞
  

1
Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)−

Λ𝑜Λ1𝛾𝑞+(𝑞+𝛼𝛾)Λ1𝑀  𝑆𝑖𝑛𝜃

𝑞+𝛼𝛾+𝛽1𝑞𝛾

 𝑒
−𝜉√ 

Λ3𝑃𝑟

Λ4
(

𝑞𝛾

𝑞+𝛼𝛾
)
.  
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6. RESULTS AND DISCUSSION 

The mixed convection fluid flow with 𝐴𝑙2𝑂3  and 𝑇𝑖𝑂2  nano-
particles with water and blood as base fluids are investigated with 
a slip effect at the boundaries on an inclined plane under the mag-
netic field by using AB and CF derivative schemes. The solution for 
the considered problem is explored with the Laplace scheme and 
numerical approaches i.e., Stehfest and Tzou for the inversion phe-
nomenon of the Laplace transform. To obtain some physical fea-
tures of velocity attained with AB and CF derivatives, some partic-
ular cases are also discussed. For studying the impacts of diverse 
flow parameters i.e., fractional parameters (𝛼, 𝛽), angle of inclina-
tion, magnetic parameter, volume fraction, 𝑃𝑟, and Grashof num-
ber, graphical diagrams are presented in Figs 2-9 through Mathe-
matica.  

The impact of fractional parameters (𝛼, 𝛽), on temperature is 
shown in Figs. 2(a, b). By raising the estimations of 𝛼, 𝛽, the tem-
perature illustrates decaying behaviour (at a small time) and an in-
creasing trend at a large time, consequently, we see that the frac-
tional parameters have dual behaviour (for small and large time) for 
temperature. This specifies the consequence of the CF and AB 
fractional operators that promise to illustrate the generalized 
memory and hereditary features. This is due to the different prop-
erties of  CF (based on exponential function having no singularity) 
and AB (having non-singular and non-local kernel) fractional oper-
ators. From Fig. 3a, as improvement in the estimations of 𝑃𝑟 shows 
that development in the viscosity of liquid declines the difference 
among thermal boundary layers of the liquid, so the temperature 
profile declines because of the rises in the estimations of 𝑃𝑟 and in 
the same way, the comparison of two nanofluids is shown in Fig. 
3b by considering other parameters constant and changing the 
fractional parameters 𝛼, 𝛽. We see that the temperature of the 
blood-based NF is smaller than the water-based nanofluid, which is 
due to the physical characteristics of certain nanoparticles.  

From Figs. 4a and 4b, we see that the velocity of fluid also de-
celerates by enhancing the estimation of 𝛼, 𝛽 for a small time but 
speeds up at a large time. This is also due to the diverse properties 
of  CF (based on exponential function having no singularity) and AB 
(having non-singular and non-local kernel) fractional operators. The 
fluid velocity is increased as 𝐺𝑟 grows as shown in 5a. The velocity 
increases because of enhancing the values 𝐺𝑟. The relative impact 
of the heat buoyant behaviour on the viscous force is investigated 
using 𝐺𝑟. Such effects happen because of the existence of buoyant 
forces. An enhancement in the 𝑃𝑟 declines the fluid velocity due to 

development in the fluid viscosity as in 5b  𝑃𝑟 is inversely related 
to thermal diffusivity, resulting in declining heat transmission. The 
effect of volume fraction (𝜑) on velocity is illustrated in Fig 6a with 
the variation in time. The increase in volume fraction enhances the 
viscous impact of fluid flow which slows down the velocity of the 
fluid. 

In Figs. 7a and 7b, growing the estimation of the magnetic pa-
rameter slows down the fluid velocity. Larger estimates of 𝑀 lead 
to decreased velocity. Physical applications for such observations 
are because of the Lorentz force which produces a resistance in 
the flow. Similarly, the behaviour of the inclination angle of the mag-
netic field is shown in Fig 7b. The growth in the inclination angle 
declines the influence of the magnetic field which conveys off the 
Lorentz force effect, so by growing the estimation of the inclination 
angle, the fluid velocity again decreases. For 𝛳 = 𝜋/2 (normal 
magnetic field), the velocity is maximum declined, such observa-
tions are because of the Lorentz force which produces resistance 
in the flow. The Lorentz force has the greatest influence on velocity, 
decreasing velocity.  

The comparison of ordinary and fractional fluid velocity is illus-
trated in Fig. 8a and 8b for diverse values of fractional parameters. 
We observe that when the fractional parameter i.e.,  𝛼, 𝛽 → 1, the 
fractional fluid velocity almost overlaps with ordinary velocity, which 
represents the convergence of our obtained numerical solutions of 
the velocity profile. From the graphical illustration, we see that the 
results attained by the AB-fractional derivative show more growing 
behaviour than the CF-fractional derivative. This is also due to the 
different properties of CF- (based on exponential function having 
no singularity) and AB (having non-singular and non-local kernel) 
fractional operators. 

The comparison of different nanofluids for velocity field is 
shown in Fig. 9a. We see that the enhancement in velocity, due to 
(𝐻2𝑂-A𝑙2𝑂3)  and (Blood-A𝑙2𝑂3  ) is more advanced, than (𝐻2𝑂-
𝑇𝑖𝑂2)  and (Blood-𝑇𝑖𝑂2) based NFs but (𝐻2𝑂-A𝑙2𝑂3)  based NF 
has a higher velocity than (Blood-A𝑙2𝑂3  )  based NF, all this be-
haviour is due to the physical characteristics of certain nanoparti-
cles. The comparison of numerical methods specifically Grave 
Stehfest as well as Tzou’s is considered in Fig. 9b. The curves of 
the Stehfests, as well as Tzou’s scheme, overlap each other in both 
cases, which also validates our present results. Furthermore, to 
make the validity of our attained solutions, the numerical compari-
son of temperature as well as velocity field through Stehfest and 
Tzou’s with Nusselt number as well as skin friction, are presented 
in Tables 2-3.  
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Fig. 2. Plot of temperature field for both fractional models when 𝑃𝑟 =
 0.3, 𝜑 = 0.01 with (a): 𝑡 = 0.1 and (b): 𝑡 = 1.5  

 

 
Fig. 3.   Temperature field for diverse values of (a): Prandtl number and    

(b): nanofluid with 𝛼, 𝛽 = 0.5, 𝜑 = 0.01,  and 𝑡 = 0.1 

 

 

Fig. 4. Effect of  (𝛼, 𝛽) on velocity for 𝑃𝑟 = 0.3, 𝑀 = 0.5, 𝐺𝑟 = 4,

𝜃 =
𝜋

4
, 𝑤 = 0.9, 𝑏 = 0.5, 𝛿 =

𝜋

4
 and (a): 𝑡 = 0.1 (b): 𝑡 = 1.5  

 

 

Fig. 5. The effect of (a): Grashof number (b): 𝑃𝑟 on velocity when 𝛼, 𝛽 =

0.5, 𝑀 = 0.5, 𝜃 =
𝜋

4
, 𝑤 = 0.9, 𝑏 = 0.5, 𝛿 =

𝜋

4
, 𝑡 = 0.1 

 

Fig. 6. Effect of volume fraction 𝜑 on velocity for 𝛼, 𝛽 = 0.5,   𝑃𝑟 =

0.3, 𝑀 = 0.5, 𝐺𝑟 = 4, 𝜃 =
𝜋

4
, 𝑤 = 0.9, 𝑏 = 0.5, 𝛿 =

𝜋

4
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Fig. 7. Variation in (a): magnetic parameter and (b): the inclination of  
magnetic field for velocity field with 𝛼, 𝛽 = 0.5, 𝑃𝑟 = 0.3, 𝐺𝑟 =

4,   𝑤 = 0.9, 𝑏 = 0.5, 𝛿 =
𝜋

4
, 𝑡 = 0.1 

 

 

Fig. 8. Comparison of ordinary and fractional velocity when (a): 𝛼, 𝛽 →
 0.5 and (b): 𝛼, 𝛽 → 1 

 

 

Fig. 9.   Comparison of (a): nanofluids and (b): numerical techniques for 
the velocity field 

Tab. 2. A comparison of solutions with two diverse approaches 

𝝃 

Tempe-

rature by 

Stehfest 

Tempe-

rature by 

Tzou 

Velocity 

by 

Stehfest 

Velocity 

by 

Tzou 

0.1 0.9471 0.9471 0.7001 0.6999 

0.2 0.8971 0.8971 0.7856 0.7854 

0.3 0.8496 0.8496 0.8532 0.8530 

0.4 0.8046 0.8046 0.9053 0.9051 

0.5 0.7619 0.7619 0.9438 0.9436 

0.6 0.7215 0.7215 0.9707 0.9705 

0.7 0.6831 0.6831 0.9875 0.9872 

0.8 0.6468 0.6468 0.9956 0.9954 

0.9 0.6123 0.6123 0.9964 0.9961 

 

 



DOI 10.2478/ama-2025-0005                                                                                                                                                          acta mechanica et automatica, vol.19 no.1 (2025) 
 

41 

Tab. 3.  Numerical analysis of Nusselt number as well as skin friction for 
CF and AB derivatives 

𝜶, 𝜷 
𝑵𝒖 by 

CF 

𝑵𝒖 by 

AB 

𝑪𝒇 by 

AB 

𝑪𝒇 by 

CF 

0.1 0.5352 0.5309 0.1836 0.1824 

0.2 0.5276 0.5204 0.1751 0.1553 

0.3 0.5151 0.5053 0.1611 0.1335 

0.4 0.4972 0.4842 0.1423 0.1127 

0.5 0.4730 0.4558 0.1203 0.0934 

0.6 0.4411 0.4193 0.0965 0.0777 

0.7 0.4000 0.3761 0.0728 0.0677 

0.8 0.3502 0.3326 0.0513 0.0637 

0.9 0.2965 0.2996 0.0359 0.0654 

7. CONCLUSIONS 

We study mixed convection flows over an inclined plate with 
 𝐴𝑙2𝑂3  and 𝑇𝑖𝑂2 nanoparticles with water and blood-based fluids 
along with new definitions of CF (based on exponential function 
having no singularity) and AB (having non-singular and non-local 
kernel) fractional operators in several circumstances which is a sig-
nificant theoretical and practical study for the solution of important 
problems. A semi-analytical approach for AB and CF-based models 
is applied by the Laplace transform technique along with Stehfest 
and Tzou’s numerical schemes.  

− The temperature shows dual behaviour with different estima-
tions of fractional parameters with diverse estimations (small 
and large) of the time. 

− The temperature displays decaying behaviour for large estima-
tions of the 𝑃𝑟. 

− The velocity slows down by growing the estimation of 𝑀. 
− The velocity profile speeds up as increasing the estimations of 

𝐺𝑟 and declines for increasing values of volume fraction 𝜑. 

− The enhancement in velocity, due to (𝐻2𝑂-A𝑙2𝑂3)  and (Blood-
A𝑙2𝑂3  )  is more advanced, than (𝐻2𝑂-𝑇𝑖𝑂2  )  and (Blood-
𝑇𝑖𝑂2 ) based NFs. 

− Our obtained solutions through different numerical methods 
specifically Stehfest and Tzou’s are alike. 
Consequently, our claimed results offer significant insights into 

industrial and engineering systems. These findings guide the de-
velopment of thermal transfer technologies, assisting in the optimi-
zation of processes for better efficiency in applications such as 
cooling mechanisms and power generation. The research ad-
vances heat transfer processes, increasing the overall efficiency of 
industrial systems. 

 

 

Nomenclature: 

Symbol Quantity Unit 

w Velocity (𝑚/𝑠) 

𝑡 Time (𝑠) 

T Temperature (𝐾) 

𝑘𝑛𝑓 
Thermal conductivity of 

nanofluid 
(𝑊/𝑚𝑘) 

T Temperature (𝐾) 

𝑇∞ Ambient temperature (𝐾) 

𝐺𝑟 Grashof number (−) 

𝑀 
Dimensionless magnetic 

parameter 
(−) 

𝑃𝑟 Prandtl number (−) 

𝑞 Laplace transform variable (−) 

𝐵𝑜 Strength of magnetic field (𝑘𝑔/𝑠2) 

𝐶𝑝 
Specific heat at constant 

pressure 
(𝐽/𝑘𝑔𝐾) 

b Slip parameter (−) 

𝐶𝑓 Skin friction (−) 

Nu Nusselt number (−) 

Greek Letters: 

𝜇𝑛𝑓 Dynamic viscosity (Pa-s) 

𝛼, 𝛽 Fractional parameters (−) 

𝛼1 Second-grade parameter (−) 

𝛽𝑇 
Volumetric coefficient of 

expansion 
(−) 

𝜌𝑛𝑓 Density of nanofluid (𝑘𝑔/𝑚3) 

θ The angle of magnetic 
inclination 

(−) 

𝛿 The inclination angle of 
the plate 

(𝑚𝑜𝑙/𝑚3) 

𝛽𝑇 Volumetric coefficient of 
expansion 

(−) 

𝜎𝑛𝑓 Electrical conductivity of 
nanofluid 

(−) 

𝜌𝑓 Density of fluid (𝑘𝑔/𝑚3) 

𝜌𝑠 Density of solid (𝑘𝑔/𝑚3) 

𝜑 The volume fraction of 
nanofluid 

(−) 

    Note: This (−) signifies the dimensionless quantity. 
 

Abbreviations: 

AB Atangana Baleanu time fractional derivative 
NF Nanofluid 
CF Caputo-Fabrizio time fractional derivative 
MHD Magnetohydrodynamics 
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