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Abstract: Using the method of singular integral equations, the elastic-plastic problem for notched Brazilian disk at plane deformation state 
was solved. Based on Dugdale model the relationships between load, notch tip opening displacement and the length of the slip bands  
was established. The results demonstrate the potential of the proposed method for practical applications in engineering, particularly  
in the assessment of structural integrity under various loading conditions. 
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1. INTRODUCTION 

The basic material parameter in fracture mechanics is the criti-
cal stress intensity factor, determined experimentally on specimens 
with initial cracks. In the case of metals, the procedure for deter-
mining this parameter is standardized and widely used. The frac-
ture process, in this case, begins with a fatigue-initiated crack. For 
quasi-brittle materials such as concrete, ceramics, or rocks, it is dif-
ficult to obtain an initial crack with strictly defined parameters. Usu-
ally, the initial crack is produced during the specimen forming stage. 
In this way, slots of significant width (2-4 mm) with rounded tips are 
obtained. 

Disk-type specimens are among the most commonly used test 
samples for determining Mode I and mixed-mode fracture tough-
ness in brittle and quasi-brittle materials like ceramics, concrete, 
rocks, and rock-like materials. A circular disk specimen subjected 
to diametric compressive loading is a simple and well-established 
indirect testing method. These so-called Brazilian tests have been 
widely used to obtain the tensile strength of brittle materials. An up-
to-date review of works concerning various aspects of the Brazilian 
test can be found in [10,17]. 

A disk with an internal central crack, as a convenient experi-
mental specimen for testing fracture mechanics parameters, was 
considered analytically by [18,37-40]. These results concerning 
stress field distribution and values of the stress intensity factors 
were confirmed by [2,3,34]. 

Many recent works have been devoted to the investigation of 
the fracture process in brittle and quasi-brittle materials using com-
pressed disks with central narrow slots. The papers [1,4,6,31,36] 
present experimental investigations of the critical value of the stress 
intensity factor under Mode I and Mode II loading conditions using 
various fracture criteria. It should be emphasized that the works 
cited above concern the problem of stress concentration in disk 
specimens with a strictly defined mathematical crack (i.e., a crack 
of zero width). The discussion of the influence of the relative crack 
length and the error of the loading angle on the experimental results 
for the Brazilian disk was presented by [8]. 

The semicircular disk with an edge narrow notch was also used 
as a test specimen [5,6]. 

Theoretical and experimental investigations have been per-
formed for chevron-notched Brazilian disks [35], or for disks with 
multiple pre-existing notches [41]. 

The application of the deformation fracture criterion to the de-
termination of basic fracture mechanics parameters requires 
knowledge of the relationship between the load level and the open-
ing displacement at the crack tip. This means that, for an arbitrary 
test element, not only the stress field should be determined, but 
also the strain field, considering the changes taking place in the 
fracture process zone. General solutions for cracks or notches in 
an infinite plane are known ([23], see also [27]), but for particular 
specimens, these solutions can only be regarded as asymptotic. 

In the paper [13], the solution for the elastic-plastic problem for 
notched Brazilian disks in a plane stress state was presented. 
Based on the Dugdale model [9,16] (see also [33], where this model 
is precisely described), and assuming that only one plasticity band 
emanates from the tip of the narrow slot placed at the center of the 
Brazilian disk, the relationships between load, notch tip opening 
displacement, and the length of the slip bands were established. 

The aim of this work is similar to that of [13], i.e., to determine 
the relationship between the load level and the opening displace-
ment at the tip of the narrow slot in a cylindrical specimen under 
diagonal compression, but in the plane strain state. 

It is assumed that in the case of a plane strain state in a body 
with a sharp V-notch [15,30] or crack [14,19,21-23], the stress con-
centrator emits two slip bands that form a certain angle with respect 
to one another. We shall use this approach to solve the elastic-
plastic problem for the notched Brazilian disk. We assume that the 
fracture process zone, characterized by plastic deformations near 
the vertices of the narrow slot in a perfectly elastic-plastic material 
under plane strain, localizes in two slip bands. Under symmetrical 
loading, these bands are simulated with cuts of unknown lengths, 
with the constant tangential stress equal to the shear yield limit in 
accordance with the Tresca-Saint Venant plasticity condition given 
at the cut edges. We suppose that normal displacements are 
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continuous at the contour cuts, while the tangential displacements 
exhibit a nonzero discontinuity at these contours. 

2. PROBLEM FORMULATION 

Consider a circular disk weakened by a narrow opening with 
vertices rounded by circular arcs of the radius 𝜌 (see Fig. 1a). The 

slot described by contour 𝐿1 is placed at the disk center (contour 

𝐿0). Assume that the radius 𝑅 of circle 𝐿0 is the unit length param-

eter. The projection of the slot onto the Ox axis measures 

2𝑙1=2𝛾1𝑅. This indicates the total width of the slot. The contour of 
the slot consists of two parallel straight sections and two semicir-
cles. The semicircles with radii 𝜌 form the vertices of the narrow 

slot [12,26,27]. The parameter 𝜀 = 𝜌 𝑙1⁄ = 𝜌 (⁄ 𝛾1𝑅) is the rela-
tive rounding radius of the slot vertices. 

 

 

Fig. 1.   a) Notched Brazilian disk with slip bands, b) detailed view on slot tip with emanating cracks 

We assume that the fracture process zone is characterized by 
plastic deformations near the vertices of the narrow slot. In a per-
fectly elastic-plastic material subjected to plane strain, these defor-
mations localize in two plastic bands, referred to as slip bands [21]. 
Under symmetrical loading, simulate these bands with cuts 𝐿2, 𝐿3 

and 𝐿4, 𝐿4 of unknown lengths 𝑙2 = ⋯ = 𝑙5 = ℓ𝑌 with the con-

stant tangential stress 𝜏𝑌 (𝜏𝑌 is shear yield limit in accordance with 
Tresca-Saint Venant plasticity condition 𝜏𝑌 = 𝜎𝑌/2) given at the 
cut edges. Suppose that normal displacements are continuous at 
contours 𝐿2 and 𝐿3 (𝐿4, 𝐿5 respectively) while tangential displace-
ments reveal a nonzero discontinuity at these contours. 

These cuts with the contours 𝐿2 to 𝐿5) are symmetrically 

placed with respect to both axes of the Oxy system and inclined to 
the Ox axis at an angle 𝜃 (see Fig. 1b). The unknown relative extent 
of each linear defect that weakens the disk specimen is defined as 
𝑙2 = ⋯ = 𝑙5 = 𝛾2𝑅. 

For the convenience of data composition in numerical calcula-
tions, an additional dimensionless geometric parameter 𝛾3 = 𝑟 𝑅⁄  

is introduced. It defines the total distance of the slip band tip 𝑟 from 
the disk center. 

The set of dimensionless geometric parameters (𝜀, 𝛾1, 𝛾3) fully 

describes the domain under consideration. Assuming radius 𝑅 as 
basic unit length, we obtain relationships  

𝑙1 = 𝛾1𝑅, 𝑙2 = ⋯ = 𝑙5 = 𝛾2𝑅, 
𝑟 = 𝛾3𝑅,          𝜌 = 𝜀𝑙1.                                                             (1)  

The value of the 𝛾2 parameter depends on the values of 𝛾1 and 

and 𝛾3:  

𝛾2 = √𝛾3
2 − 𝛾1

2sin
2𝜃 − 𝛾1cos𝜃.                                              (2) 

Suppose that hole edge (the smooth contour 𝐿1) is free of ap-

plied loads. The disk is loaded by two concentrated forces 𝑃, which 

compress the specimen along the Ox axis(Fig. 1a). Such type of 
loading cause concentration of tensile stresses in vertices (±𝑙1) of 
the hole. 

The problem will be solved using singular integral equation 
method [25] (see also [27]). Complex stress potentials are written 

in the form [25]  

𝛷∗(𝑧) = 𝛷0(𝑧) + 𝛷(𝑧), 
𝛹∗(𝑧) = 𝛹0(𝑧) + 𝛹(𝑧),                                                       (3) 

where functions [20]: 

𝛷0(𝑧) = 𝜎𝑝
𝑧2+𝑅2

2(𝑧2−𝑅2)
, 𝛹0(𝑧) =

2𝑅4

(𝑧2−𝑅2)2
.                            (4) 

Nominal stress 𝜎𝑝 = 𝑃 (⁄ 𝜋𝑅) is equal to normal stress 𝜎𝑦 

alongside Ox axis, 𝑧 = 𝑥 + 𝑖𝑦. 

Functions 𝛷0(𝑧) and 𝛹0(𝑧) describe the stress state in a solid 
disk, which is a disk without any holes, loaded by concentrated 
forces. In contrast, the potentials 𝛷(𝑧) and 𝛹(𝑧) characterize the 

disturbed stress state caused by the opening (𝐿1) and the cuts (𝐿2 

and 𝐿3). These potentials are written in the following form [25]:  

𝛷(𝑧) =
1

2𝜋
∫ {[

1

𝑡−𝑧
+

𝑡

𝑧𝑡−𝑅2
] 𝑔′(𝑡)𝑑𝑡 +

𝐿

  +
𝑧(𝑡𝑡−𝑅2)(𝑧𝑡−2𝑅2)

𝑅2(𝑧𝑡−𝑅2)2
𝑔′(𝑡)𝑑𝑡} ,

𝛹(𝑧) =
1

2𝜋
∫ {[

𝑡
3

(𝑧𝑡−𝑅2)2
−

𝑡

(𝑡−𝑧)2
] 𝑔′(𝑡)𝑑𝑡 +

𝐿

  + [
1

𝑡−𝑧
+

𝑡

𝑧𝑡−𝑅2
+

𝑡(𝑧𝑡−3𝑅2)(𝑡𝑡−𝑅2)

(𝑧𝑡−𝑅2)3
] 𝑔′(𝑡)𝑑𝑡} .

  (5) 

Here 𝑔′(𝑡) (𝑡 ∈ 𝐿𝑘 , 𝑘=1,… ,5) is an unknown function of the 
derivative of displacement discontinuity vector across the cut con-
tour. 

The boundary condition at the contour 𝐿 is expressed as fol-
lows:  

𝑁(𝑡) + 𝑖𝑇(𝑡) = 𝑝(𝑡) 𝑡 ∈ 𝐿,  𝐿 = ⋃ 𝐿𝑘 ,
5
𝑘=1          (6) 

where 𝑁 and 𝑇 are normal and tangential components of the stress 
vector. The right side of the equation (6) is equal [25]  

𝑝(𝑡) = 𝜎𝑘 − {𝛷0(𝑡) + 𝛷0(𝑡) +
𝑑𝑡

𝑑𝑡
[𝑡𝛷0

′(𝑡) + 𝛹0(𝑡)]} , 

 𝑡 ∈ 𝐿,                                                                                      (7) 

It was assumed that constant tangential stress is equal 𝜏𝑌 =
𝜎𝑌/2. Where 𝜎𝑌 is equal to the material strength of the specimen 
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determined in the Brazilian test (compressed disk without slot):  

𝜎𝑘 = (
0,  𝑘 = 1,

𝑖𝜏𝑌 ,  𝑘 = 2,… ,5
                                                         (8) 

Fulfilling boundary condition 6) using potentials (5) we obtain 
the system of singular integral equations with unknown functions 
𝑔𝑚
′ (𝑡) (𝑚=1,… ,5)  

1

𝜋
∑ ∫ [𝐾𝑘𝑚(𝑡, 𝑡

′)𝑔𝑚
′ (𝑡)𝑑𝑡 + 𝐿𝑘𝑚(𝑡, 𝑡

′)𝑔𝑚
′ (𝑡)𝑑𝑡]

𝐿𝑘

3
𝑘=1 =     

𝑝𝑚(𝑡
′),                       𝑡 ′ ∈ 𝐿𝑚,  𝑚 = 1,… ,5,                         (9) 

where kernels are as follows:  

𝐾(𝑡, 𝑡′) = 𝑓1(𝑡, 𝑡
′) + 𝑓2(𝑡, 𝑡

′) +
𝑑𝑡′

𝑑𝑡
[𝑡′𝑔2(𝑡, 𝑡

′) + ℎ2(𝑡, 𝑡
′)],   

 (10) 

𝐿(𝑡, 𝑡′) = 𝑓2(𝑡, 𝑡
′) + 𝑓1(𝑡, 𝑡

′) +
𝑑𝑡′

𝑑𝑡
[𝑡′𝑔1(𝑡, 𝑡

′) + ℎ1(𝑡, 𝑡
′)],   

                                                                                   (11) 
where  

𝑓1(𝑡, 𝑡
′) =

1

2
[
1

𝑡−𝑡′
+

𝑡

𝑡′𝑡−𝑅2
], (12) 

𝑓2(𝑡, 𝑡
′) =

𝑡′(𝑡𝑡−𝑅2)(𝑡′𝑡−2𝑅2)

2𝑅2(𝑡′𝑡−𝑅2)2
, (13) 

𝑔1(𝑡, 𝑡
′) =

1

2
[

1

(𝑡−𝑡′)2
−

𝑡
2

(𝑡′𝑡−𝑅2)2
],                                           (14) 

𝑔2(𝑡, 𝑡
′) =

𝑅2(𝑡𝑡−𝑅2)

(𝑡′𝑡−𝑅2)3
, (15) 

ℎ1(𝑡, 𝑡
′) =

1

2
[−

𝑡

(𝑡−𝑡′)2
+

𝑡
3

(𝑡′𝑡−𝑅2)2
],                                       (16) 

ℎ2(𝑡, 𝑡
′) =

1

2
{

1

𝑡−𝑡′
+

𝑡[4𝑅4−3𝑅2𝑡(𝑡′+𝑡)+𝑡′𝑡
2
(𝑡′+𝑡)]

(𝑡′𝑡−𝑅2)3
} . (17) 

3. NUMERICAL SOLUTION OF SINGULAR INTEGRAL 
EQUATIONS 

Assume clockwise direction of tracing the contour 𝐿1 so the 
elastic region stays on the left during tracing. Taking into consider-
ation symmetry of the contour with respect to both coordinate axes, 
we can write its parametric equation in the form [27]:  

𝑡 = 𝑅𝜔1(𝜉) = 𝑅

{
 
 

 
 

𝜔𝑞(𝜉), 0 ≤ 𝜉 𝜋/2,

−𝜔𝑞(𝜋 − 𝜉), 𝜋/2 ≤ 𝜉 𝜋,

−𝜔𝑞(𝜉 − 𝜋), 𝜋 ≤ 𝜉 <3𝜋/2,

𝜔𝑞(2𝜋 − 𝜉), 3𝜋/2 ≤ 𝜉 <2𝜋.

  (18) 

the function 𝜔𝑞(𝜉) describes the segment of contour 𝐿1 laying in 

the fourth quarter of the coordinate system:  
𝜔𝑞(𝜉) = 

{
1 − 𝜀 + 𝜀(cos𝑐𝜉 − 𝑖sin𝑐𝜉), 0 ≤ 𝜉 𝜋 (⁄ 2𝑐),

𝜀𝑐(𝜋/2 − 𝜉) − 𝑖𝜀, 𝜋 (⁄ 2𝑐) ≤ 𝜉 𝜋/2,
     (19) 

where parameter 𝑐=1+ 2(1/𝜀 − 1 ) 𝜋⁄ . Total contour 𝐿1 length 

equals to 2πεγ
1
Rc. 

Parametric equation describing cut 𝐿2 is written in the form  

𝑡 = 𝑅𝜔2(𝜉) = 𝑅 [𝛾1 +
1

2
𝛾2(1 + 𝜉)𝑒

𝑖𝜃] , −1 ≤ 𝜉 ≤ 1  (20) 

Contour 𝐿3 is symmetrical to 𝐿2 with respect to the Ox axis so  

𝑡 = 𝑅𝜔3(𝜉) = 𝑅𝜔2(𝜉), −1 ≤ 𝜉 ≤ 1. (21) 

Contours 𝐿4 and 𝐿5 are symmetrical to 𝐿2 and 𝐿3 with respect 
to the Oy axis so  

𝑡 = 𝑅𝜔4(𝜉) = −𝑅𝜔2(𝜉), 𝑡 = 𝑅𝜔5(𝜉) = −𝑅𝜔2(𝜉), (22) 

−1 ≤ 𝜉 ≤ 1 

Introducing substitutions  

𝑡 = 𝑅𝜔1(𝜉), 𝑡
′ = 𝑅𝜔1(𝜂), 𝑡, 𝑡

′ ∈ 𝐿1, 0 ≤ 𝜉, 𝜂 ≤ 2𝜋, 
𝑡 = 𝑅𝜔𝑘(𝜉), 𝑡

′ = 𝑅𝜔𝑘(𝜂), 𝑡, 𝑡
′ ∈ 𝐿𝑘, 

𝑘=2,… ,5, − 1 ≤ 𝜉, 𝜂 ≤ 1,                                                     (23) 

one can reduce the system of integral equations (9) to the canonical 
form  

 

1

𝜋
∫ [𝑀1𝑚(𝜉, 𝜂)𝑔1

′ (𝜉) + 𝑁1𝑚(𝜉, 𝜂)𝑔1
′ (𝜉)] 𝑑𝜉 +

2𝜋

0

+
1

𝜋
∑ ∫ [𝑀𝑘𝑚(𝜉, 𝜂)𝑔𝑘

′ (𝜉) + 𝑁𝑘𝑚(𝜉, 𝜂)𝑔𝑘
′ (𝜉)] 𝑑𝜉 =

1

−1
5
𝑘=2

  

𝑝𝑚(𝜂),𝑚 = 1,2,3,   (24) 

where  

𝑀km(𝜉, 𝜂) = 𝑅𝐾km(𝑅𝜔𝑘(𝜉), 𝑅𝜔𝑚(𝜂)),                               (25) 

𝑁km(𝜉, 𝜂) = 𝑅𝐿km(𝑅𝜔𝑘(𝜉), 𝑅𝜔𝑚(𝜂)),                                (26) 

𝑔𝑘
′ (𝜉) = 𝑔′(𝑅𝜔𝑘(𝜉))𝜔𝑘

′ (𝜉),                                                  (27) 

𝑝𝑚(𝜂) = 𝑝(𝑅𝜔𝑚(𝜂)).                                                             (28) 

A solution of the system of integral equations (24) consists of 
five complex functions 𝑔𝑘

′ (𝜉) assigned to the contours 𝐿𝑘 . Func-

tion 𝑔1(𝜉) (0 ≤ 𝜉 ≤ 2𝜋) is 2𝜋--periodic continuous function. 
However, in order to obtain a sufficiently accurate numerical solu-
tion we have to densify quadrature nodes and collocation points in 
the vicinity of narrow slot tips. We use here nonlinear variant of sig-
moid transformation [11,32] adapted to periodic case [32]:  

𝜉 = 𝐺(𝜏) = 𝜏 −
1

2
sin2𝜏, 0 ≤ 𝜏 ≤ 2𝜋. (29) 

Consequently, the function we are looking for is as follows  

𝑢1(𝜏) = 𝑔1
′ (𝐺(𝜏)), 0 ≤ 𝜏 ≤ 2𝜋. (30) 

A solution of the system of integral equations (24) for contours 
𝐿2 to 𝐿5 is sought in the class of functions, which have an integra-
ble singularity at the ends of integration interval  

𝑔𝑘
′ (𝜉) =

𝑢𝑘(𝜉)

√1−𝜉2
, −1 ≤ 𝜉 ≤ 1, (31) 

where 𝑢𝑘(𝜉) (𝑘=2,… ,5) are continuous functions. Finally, modi-
fied system of singular integral equation (24) takes the form  

1

𝜋
∫ [𝑀1𝑚(𝜉, 𝜂)𝑢1(𝜏) + 𝑁1𝑚(𝜉, 𝜂)𝑢1(𝜏)]𝐺(𝜏)𝑑𝜏 +
2𝜋

0

+  
1

𝜋
∑ ∫ [𝑀𝑘𝑚(𝜉, 𝜂)𝑢𝑘(𝜉) + 𝑁𝑘𝑚(𝜉, 𝜂)𝑢𝑘(𝜉)]𝑑𝜉

1

−1
5
𝑘=2 =

  

𝑝𝑚(𝜂),𝑚 = 1,2,3       (32) 

In points 𝑡 = ±𝑙1 where contours 𝐿2 to 𝐿5 intersect contour 

𝐿1 the values of 𝑔𝑘
′ (−1) (𝑘=2,5) must be finite, thus we should 

provide four additional equations  

𝑢𝑘(−1)=0,𝑘=2,5.                                                           (33) 

For numerical integration of singular integral equation (32) two 
different methods must be used. For closed-loop contour 𝐿1, we 
applay midpoint rule [7] and Gauss-Chebyshev quadrature [25] for 
𝐿2 to 𝐿5 contours. Finally, we get a system of complex linear alge-
braic equations which is the discrete analogue of the respective 
system of integral equations (24) 
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2

𝑛1
∑ [𝑀1𝑚(𝜉𝑖 , 𝜂𝑗)𝑢1(𝜏𝑖) + 𝑁1𝑚(𝜉𝑖 , 𝜂𝑗)𝑢1(𝜏𝑖)]𝐺(𝜏𝑖) +
𝑛1
𝑖=1   

∑ {
1

𝑛𝑘
∑ [𝑀𝑘𝑚(𝜉𝑖 , 𝜂𝑗)𝑢𝑘(𝜉𝑖) + 𝑁𝑘𝑚(𝜉𝑖 , 𝜂𝑗)𝑢𝑘(𝜉𝑖)]
𝑛𝑘
𝑖=1 }5

𝑘=2 =  

𝑝𝑚(𝜂𝑗),    (34) 

𝑚 = 1,  𝑗 = 1,… , 𝑛𝑘, 𝑚 = 2,… ,5,  𝑗 = 1,… , (𝑛𝑘 − 1)   

where quadrature nodes and collocation points are determined by 
the formulas:  

𝜉𝑖 = 𝐺(𝜏𝑖), 𝜏𝑖 =
𝜋(2𝑖−1)

𝑛1
, 𝑖=1, … , 𝑛1,                           (35) 

𝜂𝑗 = 𝐺(𝜃𝑗), 𝜃𝑗 =
2𝜋(𝑗−1)

𝑛1
, 𝑗=1, … , 𝑛1,                         (36) 

3𝜉𝑖 = cos
𝜋(2𝑖−1)

2𝑛𝑘
, 𝑖=1, … , 𝑛𝑘 , 𝑘=2, … ,5,                         (37) 

𝜂𝑗 = cos
𝜋𝑗

𝑛𝑘
, 𝑗=1, … , (𝑛𝑘 − 1), 𝑘=2, … ,5.                         (38) 

Assuming 𝑛2 = 𝑛3 = ⋯ = 𝑛5 the system (34) consists of 

𝑛1 + 4(𝑛2 − 1) complex equations. Using Lagrange interpolation 
on Chebyshev nodes [25] to conditions (33), we obtain four missing 
equations  

1

𝑛𝑘
∑
𝑛𝑘
𝑖=1 (−1)𝑖+𝑛𝑘 𝑡𝑎𝑛

𝜋(2𝑖−1)

4𝑛𝑘
𝑢𝑘(𝜉𝑖) = 0,     

𝑘 = 2,… ,5.  (39) 

Right side of the equation (34) can be easily calculated using 
relationship (7). Introducing the relation 𝛾𝑌 = 𝜎𝑝 𝜏𝑌⁄  (𝜎𝑝 =

𝑃 (⁄ 𝜋𝑅)) as relative load level parameter, we can write down 

𝑝𝑚(𝜂𝑗) in compact form:  

𝑝𝑚(𝜂𝑗) = (
𝑝1(𝜂𝑗),  𝑚 = 1,

(1 −
𝑖

𝛾𝑌
) 𝑝1(𝜂𝑗),  𝑚 = 2,… ,5,

  (40) 

where  

𝑝1(𝜂𝑗) = 𝜎𝑝
|𝜔𝑘(𝜂𝑗)|

2
−1

𝜔𝑘(𝜂𝑗)
2
−1
[

2

𝜔𝑘(𝜂𝑗)
2
−1

𝜔𝑘
′ (𝜂𝑗)

𝜔𝑘
′ (𝜂𝑗)

−
|𝜔𝑘(𝜂𝑗)|

2
+1

𝜔𝑘(𝜂𝑗)
2−1

] ,

𝑘=1,… ,5.

  (41) 

Solution of the problem is symmetrical with respect to the axis 
Ox i Oy. Conditions resulting from symmetry concerning the sought 
function 𝑢𝑘(𝜉) and necessary kernel modifications are described 
in details in [29] (see also [27]). Thus, the rank of linear system (34), 
(39), can be easily reduce by a factor of four. 

Having obtained values of sought function 𝑢(𝜉𝑘), one can de-
termine the stress-strain state in whole elastic region by using an 
integral representation of complex stress potentials (5). 

The slot edge (contour 𝐿1) is free of applied load, then the con-
tour stress at the edge can be calculated using a simple formula 
[27].  

𝜎𝑠 = −4𝜎𝑝ℑ
𝑢1(𝜉)

𝜔1
′ (𝜉)

= −4𝜎𝑝ℑ
𝑢1(𝜏)

𝜔1
′ (𝐺(𝜏))

. (42) 

Stress intensity factors in crack tips 𝐾𝐼  and 𝐾II can be directly 

expressed through the sought function 𝑔𝑘
′ (𝑡) (31). Let us introduce 

corresponding dimensionless stress intensity factors 𝐹𝐼 and 𝐹II by 
means of the following relationship  

𝐾𝐼
+ − 𝑖𝐾II

+ = (𝐹𝐼
+ − 𝑖𝐹II

+)𝜎𝑝√𝜋𝑅. (43) 

Here upper indexes (+) indicate crack tip at 𝜉 = +1. Taking 

into account relation (31), we get for coefficients 𝐹𝐼 and 𝐹II the for-
mula [25]:  

𝐹𝐼
+ − 𝑖𝐹II

+ = −√|𝜔𝑘 ′(+1)|
𝑢𝑘(+1)

𝜔
𝑘′
(+1)

,  𝑘 = 2,… ,5,  (44) 

where  

𝑢𝑘(+1) = −
1

𝑛
∑
𝑛𝑘
𝑖=1 (−1)𝑖𝑢𝑘(𝜉𝑖) 𝑐𝑜𝑡

𝜋(2𝑖−1)

4𝑛
,    

𝑘 = 2,… ,5. (45) 

Cracks 𝐿2 and 𝐿3 (and 𝐿4, 𝐿5 respectively) simulate fracture 
process zones (slip bands) at the tips of narrow slot 𝐿1, thus 

stresses at the crack 𝐿𝑘  end must be finite  

𝑔𝑘
′ (𝑡 = ±(𝑙𝑘)) = 𝑔𝑘

′ (𝑅𝜔𝑘(+1))=0, →
𝑢𝑘(+1)=0,𝑘=2, … ,5. (46) 

This condition allows as to calculate unknown length 𝑙2 = 𝛾2𝑅 
using iteration process. 

The length of slip band depends on the value of the angle 𝜃. It 

was assumed that there is an unique 𝜃 angle for which the band 
length is maximum. 

 

Fig. 2 Slot tip opening displacement 

Opening displacement at the notch tip (Fig. 2) can be calculated 
based on known [25] relationship between function 𝑔𝑘(𝑡) (𝑘=2,3) 

and displacement discontinuity vector (𝑣𝑘
+ − 𝑣𝑘

−) across the con-

tour 𝐿𝑘  

2𝐺
𝑑

𝑑𝑥′
(𝑣𝑘

+ − 𝑣𝑘
−) = (1 + 𝜅)𝑔𝑘

′ (𝑥′),   𝑥′ ∈ 𝐿𝑘 ,   

𝑘 = 2,… ,5, (47) 

where 𝑥′ is a local abscissa at contour 𝐿𝑘 , 𝐺 - shear modulus, 𝜅 - 
Muskhelishvili's constant. 

Taking into consideration that in the beginning of cuts 𝐿2 and 

𝐿3 only tangential displacements have discontinuity 𝛿II, we obtain 
(see Fig. 2)  

𝛿𝐼
𝑉=2𝛿IIsin𝜃. (48) 

The relationship (1 + 𝜅 ) (⁄ 4𝐺)=2(1 − 𝜈2 ) 𝐸⁄  is valid in 
plane strain state, so taking into account (47), one can find the tan-
gential displacement across cut edges 𝐿~2 = in the point 𝑥′ = 𝑙2

−, 
i.e. in the slot tip, as follows  

𝛿II = ℑ𝛿(𝑙2
−) =

4(1−𝜈2)

𝐸
ℑ𝑔(𝑙2

−), (49) 

where values of function 𝑔(𝑙2
−) are determined by relationship (45):  

𝛿𝐼 = −
8(1−𝜈2)

𝐸
𝑠𝑖𝑛 𝜃

1

𝑛2
∑𝑛2𝑖=1 ℑ𝑢2(𝜉𝑖). (50) 

In the next section the relationship between the theoretical 
value of dimensionless notch tip opening displacement 𝛿~𝐼 and crit-
ical load value 𝜎𝑐 = 𝜎𝑛 for given geometrical parameters (narrow 

slot tip radius 𝜀, relative slot range 𝛾1), and standard material con-

stants (Young's modulus 𝐸, Poisson's ratio 𝜈, relative material 
strength 𝛾𝑌). Knowing the value of the critical load the critical stress 
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intensity factor 𝐾𝑐  can be calculated with the following formula 
23,24]:  

𝐾𝑐 = √𝛿𝐼𝐸𝜎𝑐 = √𝛿𝐼𝛾𝑌𝜎𝑐√𝜋𝑅. (51) 

4. NUMERICAL RESULTS 

The problem as it was stated have two independent geomet-
rical parameters: 𝜀, 𝛾1, and dimensionless load level 𝛾𝑌. The un-

known are relative band length 𝛾2 (or extent 𝛾3) and the angle 2𝜃 
between bands which emanates from slot tip. In order to reduce the 
number of independent parameters, it was assumed constant 
rounding radius of slot tips 𝜌=1/75𝑅 and the calculations were per-

formed for the relative slot span 𝛾1 chosen from the set 𝛾1 =
{0.1,0.2,0.3,0.4,0.5}, thus relative rounding radius of the slot verti-

ces can be easily calculated as 𝜀=1/(75𝛾1). 
As has been shown in [13,27], plastic deformation near 

rounded notch tip begins when tangential stresses 𝜏𝑛 at lines di-
rected along slip bands reach half of the maximal normal stress 
(𝜎𝑠)max value. Which lets you calculate corresponding minimal 
load level (𝛾𝑌)min 

|𝜏𝑛|max = 𝜏𝑌 =
1

2
(𝜎𝑠)max → (𝛾𝑌)min =

2

𝑅𝐼
≈ 0.668. (52) 

The value of the stress rounding factor [26,28] is 𝑅𝐼=2.992. 
The following discrete set of 𝛾𝑌 = 𝜎𝑝 𝜏𝑌⁄  values was used for 

calculations: 𝛾𝑌 = [0.8, 0.9, 1.0, 1.2, 1.5, 2.0, 5.0]. The 𝜃 values 

were taken from the 1∘ ≤ 𝜃 ≤ 85
∘
 range every 5 degrees, de-

creasing the step in the vicinity of the sought maximum value of 𝛾2. 

Fig. 3 shows the dependence of the 𝛾3 range on the slip band 

angle 𝜃 for several loading levels 𝛾𝑌. As can be seen, for the min-
imum 𝛾𝑌=0.8 value the maximum range of the bands is achieved 

for an angle of approximately 𝜃=2.3∘ with a corresponding range 

of 𝛾3=0.89. For higher values of the load level 𝛾𝑌 the maxima of 
the function 𝛾3(𝜃) shift towards 𝜃 → 0. 

 

Fig. 3.   Dependence of the 𝛾3 range on the slip band angle 𝜃 for several           

loading levels 𝛾𝑌. 

The dependence of the relative length of the slip band 𝛾2 on 

the narrow slot extent 𝛾1 is shown in Fig. 4. For longer slots the 
𝛾2(𝛾𝑌) bandwidth functions become less and less predictable. 

Fig. 5 shows the plot of the 𝛿𝐼 notch tip opening displacemnt 

dependence on the 𝛾𝑌 load level for several values of the central 
slot range 𝛾1. 

 

 

Fig. 4.   Dependence of the relative length of the slip band 𝛾2 on the narrow    

             slot extent 𝛾1 

 

Fig. 5.   Notch tip opening displacement 𝛿𝐼 dependence on the 𝛾𝑌 load   

level for several values of the central slot range 𝛾1 

5. CONCLUSIONS 

The elastic-plastic problem for Brazilian disk with central narrow 
slot in plane strain state was solved. The solution was obtained by 
the method of singular integral equations with complex stress po-
tentials for a system of cracks and openings in two-dimensional cir-
cular elastic domain. All necessary analytical background was doc-
umented in detail. Based on Dugdale model of fracture process 
zone, relationships between the load, notch tip opening displace-
ment, and the length of the slip bands were established. Numerical 
calculations for arbitrary but representative set of geometrical pa-
rameters were performed. 

The presented solution, despite the obvious simplifications re-
sulting from the adopted assumptions (plane strain state and frac-
ture process zone as a slip band), can be used to estimate the frac-
ture mechanics parameters of quasi-brittle materials determined in 
the Brazilian test. 
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