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Abstract: The article concerns the modeling of the transverse impact of an impactor (test sample) on the surface of an infinite elastic layer. 
The Laplace transform with respect to time and the Hankel transform with respect to the radius for the axisymmetric case were applied. 
The propagation of elastic waves in the layer and local deformations in the contact zone are taken into account. Impact force, impact time 
and the coefficient of restitution were examined. The results are compared with the elastic half-space. The calculations carried out showed 
that for layer thicknesses of more than five impactor diameters, the layer can be considered as a half-space.  
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1. INTRODUCTION 

The purpose of the paper is to analyse the wave phenomena 
occurring during the impact of an impactor (rod, test sample) 
against an anvil (elastic layer) and to develop a method for calcu-
lating the parameters of selected physical quantities occurring in 
the anvil and impactor in the initial post-impact period. The paper 
continues the analysis of modelling of the anvil considered in [1] 
as an elastic half-space.  

Many examples of impact-type transient processes with differ-
ent strain rates can be found in the fields of seismology, earth-
quake engineering, dynamic soil-substrate interactions and terrain 
characterization, aviation, machinery, transportation, civil engi-
neering, agriculture, military applications, mathematical modeling 
of erosion processes, spraying [2-11].  

A study of the transient waves generated in the layer by the 
application of a normal linear and point load with rapid changes in 
time was carried out in papers [7, 10, 12-14]. The Laplace trans-
form with respect to time and the exponential Fourier transform 
with respect to the longitudinal variable for the linear load and the 
Hankel transform due to the radius for the axisymmetric case 
were applied.  

The infinite plate model was formulated in papers [15, 16] as a 
closed form approximation for the initial elastic impact response of 
an isotropic plate. In paper [17] an analytical solution of the Zener 
equation was proposed to predict elastic impact of a sphere on 
the large plate. Energy loss caused by bending wave and motions 
of the sphere and the plate were studied utilising contact force 
history.  

It was later extended to orthotropic plates [18, 19], which was 
used to study the elastic impact of orthotropic composite lami-
nates. In the paper [20], plastic deformation and bending vibra-

tions were taken into account for such a model, a non-linear elas-
tic-plastic model was presented to evaluate the coefficient of 
restitution Rf.  

In paper [21] the authors replaced the nonlinear contact law 
with the linear one to solve Zener model for elastic sphere impacts 
on large, thin plates. They cocnluded that the solution well agree 
for λ*<0.85 and Rf*>0.2 (defined in section 3.2). Such a linearisa-
tion method was utilised to investigate the cotact time [22] and the 
energy sissipation [23]. The effect of elastic waves on elasto-
plastic strain was studied in [24].  

The problem of collision of elastic bodies in terms of their de-
formation has a rich history. Elementary collision theory uses the 
coefficient of restitution Rf as the key parameter to characterise 
the deformation properties of colliding bodies and does not reflect 
the various characteristics of the internal state of bodies [5, 25].  

In practice, the Hertzian impact theory is used to determine 
the stresses occurring during the interaction of two bodies [6]. 

Sears [26] considered the influence of the spherical shape of 
the rod ends on the obtained results. In these studies, he took into 
account both local deformations and wave propagation. This 
approach led to a good agreement of theoretical and experimental 
results and is used in many subsequent works [27, 28].  

The theory of crossbeam impact comes from Timoshenko 
[29].  

Paper [7] presents an overview of the approaches developed 
by the author and his colleagues to study the effect of a blunted 
elastic body on the surface of an elastic medium. Mathematically, 
the problem is generally formulated as a non-stationary mixed 
boundary problem of continuum mechanics, in which the unknown 
contact limit varies in time and space. The process of collision 
between a blunt body and an elastic medium always involves a 
supersonic phase, during which the boundary value problem can 
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be formulated as a non-mixed boundary and thus solved by sim-
pler methods [7, 8, 30]. 

The impact of the supersseismic phase on the collision pro-
cess immediately after the first contact is investigated within the 
framework of Hertz's theory of impacts in [30]. For small values of 
the αA parameter (defined in point 4), the influence of the su-
persseismic state on the course of the impact can be neglected.  

Paper [31] presents a numerical analysis of the plastic target 
plate behaviour evoked by the high-velocity impact of a blunt-
nosed cylindrical rigid projectile. The impact strength of elastic 
bars of variable cross-section was nalysed in [32] to investigate 
the relation between the restitution coefficient and the imacting 
body shape. 

We will consider the collision of an impactor with an elastic 
layer. The study will be carried out under the basic geometrical 
assumptions of Hertzian theory [33] 

We limit ourselves to considering the direct interaction of the 
central bodies, i.e. we assume that they are the resultant of the 
dynamic contact pressures applied to the colliding bodies, di-
rected along a straight line connecting their centers of inertia and 
coinciding with the normal to the compression surface at the point 
of initial contact of the non-deformed the surface of these bodies.  

This simplifying assumption will allow us to consider only one 
component of the displacement of bodies at a point coinciding 
with their point of initial contact. 

2. IMPACT PROBLEM STATEMENT 

Assuming that a heavy body strikes an elastic layer and, at 
the moment of contact, a layer of thickness h has a velocity of V0. 
Under impact, local deformations will occur in the elastic layer and 
in an impact cylinder of radius r0, and, in addition, vibrations of the 
layer are produced. We assume that the friction between the 
contacting surfaces is negligible and that the elastic layer material 
with Young's modulus E and Poisson's ratio 𝜈 does not undergo 
plastic deformation or cracking. 

The assumption of elastic behaviour of the metal layer (anvil) 
can be extended to the case of real processes where there is only 
local plastic deformation in the material, limited by the proximity of 
the initial point of contact; moreover, the energy required to pro-
duce a residual indentation is only a small fraction of the initial 
kinetic energy [34]. 

Continuing with the contact between the impactor and the lay-
er, the displacements of the impactor will consist of a part de-
pendent on the local compression and a part determined by the 
dynamic deflections of the layer. As is known, the dynamic deflec-
tions of the layer satisfy the differential equations [10]. 

2.1. Mathematical model of the elastic layer 

A point source gives rise to volumetric longitudinal (P) and 
shear (S) waves, Rayleigh-Lamb waves and Rayleigh (R) waves. 
In [35], Lamb considered the problems of wave propagation in an 
isotropic elastic layer.  

Let us consider in a cylindrical coordinate system (𝑟, 𝜃, 𝑧) a 

layer (0 ≤ 𝑧 < ℎ), where r – radial and z – axial coordinates; θ –
 angular coordinate (Fig. 1). The medium is assumed to be homo-
geneous and isotropic. Axially symmetric non-stationary loads 
depending on position and time act on the surface p(r, t) with 
relative spatial distribution Z(r) and the resultant P(t); i.e. 

p(r, t) = Z(r)P(t)  in time  t > 0. As a result of this action, there is a 
vector field of displacement in the structure 𝑈 ≡ (𝑢, 0, 𝑤), where 
u, w are the components of the displacement vector on the axis, 
r, z respectively. 

An elastic layer is characterized by the velocities of longitudi-

nal (P) c1 and shear (S) c2 waves or the Lame constants λ, , and 

density , which are related by c1=((λ+2)/)1/2, c2=(/)1/2. 
On the free surface of the medium, stresses 𝜎𝑧𝑟 , 𝜎𝑧𝜃 , 𝜎𝑧𝑧 are 

either converted to zero or take values corresponding to a given 
limit load.  

We assume that the medium is at rest and at the initial mo-
ment t = 0 the axisymmetric disturbance source starts to act 
p(r, t)=Z(r)P(t).  

As a rule, the forces arising during an impact P(t) (impact 
force) are not known in advance, they must be determined in the 
problem-solving process, and only in some cases can they be 
considered predetermined. 

The discussed issue boils down to solving Lamé displacement 
equations in a cylindrical coordinate system [10, 12]:  

 
Fig. 1. Physical model of an anvil (elastic layer) with a surface area load  
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0 ≤ 𝑟 < ∞,  0 ≤ 𝑧 ≤ ℎ,  𝑡 ≥ 0  (1) 

at boundary conditions:   

𝜎𝑧𝑧(𝑟, 0, 𝑡) = −𝑝(𝑟, 𝑡) = −𝑍(𝑟)𝑃(𝑡), 0 ≤ 𝑟 < ∞ , 𝑡 ≥ 0  (2) 

𝜎𝑟𝑧(𝑟, 0, 𝑡) = 0,  0 ≤ 𝑟 < ∞ , 𝑡 ≥ 0  (3) 

𝜎𝑧𝑧(𝑟, ℎ, 𝑡) = 0,  𝜎𝑟𝑧(𝑟, ℎ, 𝑡) = 0,  0 ≤ 𝑟 < ∞ , 𝑡 ≥ 0  (4) 

and the initial conditions t = 0 [10]: 

𝑢 = 0,
𝜕𝑢

𝜕𝑡
= 0,   𝑤 = 0,

𝜕𝑤

𝜕𝑡
= 0,  0 ≤ 𝑟 < ∞, 0 ≤ 𝑧 ≤ ℎ  (5) 

p(r, t) is the contact pressure distributed over the contact area 
ω(t). Due to the axis of symmetry, ω(t) is a circle with a radius a(t). 
We assume that the contact area does not change with time and 
from the beginning the radius is equal to r0. 

We will consider the sources 𝑍(𝑟) on the surface for which the 
following condition is met 

2𝜋 ∫ 𝑍(𝑟)𝑃(𝑡)𝑟𝑑𝑟
∞

0
= 𝑃(𝑡),   (6) 

where [6]  

𝑍(𝑟) =
1

𝜋𝑟0
2

3

2
√(1 −

𝑟2

𝑟0
2) 𝐻 (1 −

𝑟2

𝑟0
2).  (7) 

where H(t) Heaviside function: H(t) = 0 for t < 0, H(t) = 1 for t  0. 
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For comparison, we will model the anvil as an elastic plate.  In 
this analysis of the response of large plates to localised impulse 
forces, we will use the usual approximate theory of thin plates. 
This theory assumes that the radius of curvature of the plate is 
everywhere large compared to its thickness, and that the angle 
between the plate and the original plane is everywhere small. 
From this approximate theory it follows that the displacement 
w*(0,t) of the point of application is proportional to the impulse P(t) 
[15]  

𝑤∗ = 𝛼∗ ∫ 𝑃(𝑡′)
𝑡

0
𝑑𝑡′  (8) 

with 

𝛼∗ = √
3𝜌(1−𝜈2)

𝐸

1

16𝜌(ℎ∗)2 ,  

where h* is the half-thickness of the plate. The displacement w* 
refers strictly to the displacement of the centre plane of the plate. 

2.2. Mathematical model of the impactor hitting the layer 

In the study of the response of the layer to impact, the system 
of equations describing the behaviour of waves in the layer inte-
grates simultaneously with the equation of motion of the impactor 
and the condition of compliance of displacements. The last one 
takes into account a contact approximation of a sample with mass 
m1 and layer. One of the ends of the cylindrical rod is hemispheri-
cal. We will consider that for the considered impact of the im-
pactor, the contact approximation can be determined based on 
the solution to the dynamic problem of Hertz for pressing a ball 
into an elastic half-space [6]. 

Let us denote, after S.P. Timoshenko [29], the total displace-
ment of the hitting body (impactor) from the start of the impact as 
W(t), and local compression as αH. Then, of course [19, 29]  

𝑊 = 𝛼𝐻 + 𝑤   (9) 

where w = w(0, 0, t) deflection of the elastic layer surface under 
the impactor. The displacement W(t) satisfies the differential 
equation of motion 

𝑚1
𝑑2𝑊(𝑡)

𝑑𝑡2 = −𝑃(𝑡)   (10) 

under initial conditions: 

𝑊(0) = 0, 
𝑑𝑊

𝑑𝑡
= 𝑉0,  𝑡 = 0   (11) 

here P(t) is the resultant of the contact pressure. 
In the following part, we assume that 

𝑚1

𝑃

𝜕2𝑤𝑒

𝜕𝑡2 ≪ 1   (12) 

where 𝑤𝑒(𝑟, 𝑧, 𝑡) characterizes the relative displacement of the 
sample elements due to its deformation. 

3. SOLUTION METHOD 

3.1. Key dependencies for the flexible layer 

In this article, the approach [10] was used to find the stress-
strain state of an elastic layer with a thickness h. Applying the 
Laplace and Hankel transformations to equations (1) and taking 

into account uniform initial conditions (5), we obtain linear differen-
tial equations with respect to the variable z. Since the solution to 
these equations depends on four unknowns, they can be found 
using the four boundary conditions (2)-(4). Using the inverse 
Laplace and Hankel transformations, we obtain the desired rela-
tionships. The displacements u, w and stresses can be expressed 
by the Duhamel integral 

{𝑢(𝑟, 𝑧, 𝑡), 𝑤(𝑟, 𝑧, 𝑡)} = ∫ {𝑢𝛿
𝑡

0
(𝑟, 𝑧, 𝑡 − 𝑡′), 𝑤𝛿(𝑟, 𝑧, 𝑡 − 𝑡′)} ∙  

𝑃(𝑡′)𝑑𝑡′ = {𝑢𝛿(𝑟, 𝑧, 𝑡), 𝑤𝛿(𝑟, 𝑧, 𝑡)} ∗ 𝑃(𝑡)   (13) 

{𝜎𝑧𝑧, 𝜎𝑟𝑟 , 𝜎𝜃𝜃 , 𝜎𝑟𝑧} = {𝜎𝑧𝑧,𝛿 , 𝜎𝑟𝑟,𝛿 , 𝜎𝜃𝜃,𝛿 , 𝜎𝑟𝑧,𝛿} ∗ 𝑃(𝑡)   (14) 

where 𝑢𝛿(𝑟, 𝑧, 𝑡), 𝑤𝛿(𝑟, 𝑧, 𝑡) are solutions to problem (1)-(6) for 
the impulse function P(t) = δ(t): δ(t) = ∞ for t = 0, δ(t) = 0 for t ≠ 0 
and 

∫ 𝛿(𝑡)𝑑𝑡
+∞

−∞
= 1 .   (15) 

Applying the Laplace and Hankel integral transformations to the 
considered problem (1) - (6) [10] e.g. for displacement 𝑤𝛿(𝑟, 𝑧, 𝑡) 

𝑤𝛿
𝐿(𝑟, 𝑧, 𝑠) = ∫ 𝑤𝛿(𝑟, 𝑧, 𝑡)𝑒−𝑠𝑡𝑑𝑡

∞

0
    (16) 

𝑤𝛿
𝐿𝐻(𝑘, 𝑧, 𝑠) = ∫ 𝑤𝛿

𝐿(𝑟, 𝑧, 𝑠)𝑟𝐽0(𝑘𝑟)𝑑𝑟
∞

0
    (17) 

we get a solution to the problem of the following form [36]: 

{𝑢𝛿 , 𝑤𝛿} =
1

2𝜋𝑖
∫ {𝑢𝛿

𝐿 , 𝑤𝛿
𝐿}𝑒𝑠𝑡𝑑𝑠

𝑐0+𝑖∞

𝑐0−𝑖∞
    (18) 

{𝜎𝑧𝑧,𝛿 , 𝜎𝑟𝑟,𝛿 , 𝜎𝑟𝑧,𝛿} =
1

2𝜋𝑖
∫ {𝜎𝑧𝑧,𝛿

𝐿 , 𝜎𝑟𝑟,𝛿
𝐿 , 𝜎𝑟𝑧,𝛿

𝐿 }𝑒𝑠𝑡𝑑𝑠
𝑐0+𝑖∞

𝑐0−𝑖∞
   (19) 

where: 

{𝑤𝛿
𝐿 , 𝜎𝑧𝑧,𝛿

𝐿 } = ∫ {𝑤𝛿
𝐿𝐻 , 𝜎𝑧𝑧,𝛿

𝐿𝐻 }𝑍𝐻(𝑘)𝑘𝐽0(𝑘𝑟)𝑑𝑘
∞

0
   (20) 

{𝑢𝛿
𝐿 , 𝜎𝑟𝑧,𝛿

𝐿 } = ∫ {𝑢𝛿
𝐿𝐻 , 𝜎𝑟𝑧,𝛿

𝐿𝐻 }𝑍𝐻(𝑘)𝑘𝐽1(𝑘𝑟)𝑑𝑘
∞

0
    (21) 

𝜎𝑟𝑟,𝛿
𝐿 = ∫ 𝜎𝑟𝑟,𝛿

𝐿𝐻0𝑍𝐻𝑘𝐽0(𝑘𝑟)𝑑𝑘
∞

0
+

1

𝑟
∫ 𝜎𝑟𝑟,𝛿

𝐿𝐻1𝑍𝐻𝑘𝐽1(𝑘𝑟)𝑑𝑘
∞

0
    (22) 

𝐽𝑛(𝑘𝑟) is a Bessel function of the first kind of order n (n = 0, 1, …), 
k is positive parameter, c0 is a real number so that the contour 
path of integration is in the region of convergence of uδLH(k,z,s), 
wδLH(k,z,s). 

Integral expressions in (18)-(22) marked with "LH" have the 
following form  

𝑢𝛿
𝐿𝐻(𝑘, 𝑧, 𝑠) = −(𝐷1𝑘 ch(𝛼1𝑧) + 𝐷2𝑘 

sh(𝛼1𝑧)

𝛼1
+ 𝐷3 𝛼2

2 sh(𝛼2𝑧)

𝛼2
+

𝐷4 ch(𝛼2𝑧))    (23) 

𝑤𝛿
𝐿𝐻(𝑘, 𝑧, 𝑠) = (𝐷1𝛼1

2 sh(𝛼1𝑧)

𝛼1
+ 𝐷2ch(𝛼1𝑧) + 𝐷3𝑘ch(𝛼2𝑧) +

𝐷4𝑘 
sh(𝛼2𝑧)

𝛼2
)    (24) 

𝜎𝑧𝑧,𝛿
𝐿𝐻 (𝑘, 𝑧, 𝑠) = 𝜇(𝐷1𝛾 ch(𝛼1𝑧) + 𝐷2γ 

sh(𝛼1𝑧)

𝛼1
+ 𝐷32𝑘𝛼2

2 sh(𝛼2𝑧)

𝛼2
+

𝐷4 2𝑘ch(𝛼2𝑧)) ,   (25) 

𝜎𝑟𝑧,𝛿
𝐿𝐻 (𝑘, 𝑧, 𝑠) = −𝜇(𝐷12𝑘𝛼1

2 sh(𝛼1𝑧)

𝛼1
+ 𝐷22𝑘 ch(𝛼1𝑧) +

𝐷3𝛾 ch(𝛼2𝑧) + 𝐷4 γ
sh(𝛼2𝑧)

𝛼2
) ,   (26) 

𝜎𝑟𝑟,𝛿
𝐿𝐻0(𝑘, 𝑧, 𝑠) = −(𝐷1(𝑘2(𝜆 + 2𝜇) − 𝛼1

2λ)ch(𝛼1𝑧) +

𝐷2(𝑘2(𝜆 + 2𝜇) − 𝛼1
2𝜆) 

sh(𝛼1𝑧)

𝛼1
+ 2𝐷3𝑘𝛼2

2 𝜇 
sh(𝛼2𝑧)

𝛼2
+

𝐷42𝑘𝜇 ch(𝛼2𝑧))    (27) 

𝜎𝑟𝑟,𝛿
𝐿𝐻1(𝑘, 𝑧, 𝑠) = 2𝜇(𝐷1𝑘ch(𝛼1𝑧) + 𝐷2𝑘

sh(𝛼1𝑧)

𝛼1
+ 𝐷3𝛼2

2   
sh(𝛼2𝑧)

𝛼2
+

𝐷4 ch(𝛼2𝑧)) ,   (28) 
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𝜎𝜃𝜃,𝛿
𝐿𝐻0(𝑘, 𝑧, 𝑠) = 𝜆𝑎2s2(𝐷1ch(𝛼1𝑧) + 𝐷2

sh(𝛼1𝑧)

𝛼1
)    (29) 

𝜎𝜃𝜃,𝛿
𝐿𝐻1(𝑘, 𝑧, 𝑠) = −2𝜇(𝐷1𝑘ch(𝛼1𝑧) + 𝐷2𝑘

sh(𝛼1𝑧)

𝛼1
+

𝐷3𝛼2
2   

sh(𝛼2𝑧)

𝛼2
+ 𝐷4 ch(𝛼2𝑧)) , 

𝐷1 = −𝑍𝐻𝛾(8𝑘2(1 − 𝐶1𝐶2) + 2𝛾2𝑆1𝑆2)/𝐷, 

𝐷2 = −𝑍𝐻2𝛾(4𝑘2𝛼1
2𝑆1𝐶2 − 𝛾2𝐶1𝑆2)/𝐷 , 

𝐷3 = 𝑍𝐻4𝑘(4𝑘2𝛼1
2𝑆1𝐶2 − 𝛾2𝐶1𝑆2)/𝐷 , 

𝐷4 = −𝑍𝐻4𝑘(𝛾2(1 − 𝐶1𝐶2) + 4𝑘2𝛼1
2𝛼2

2𝑆1𝑆2)/𝐷,  

𝐷(𝑘, 𝑠) = 2𝜇{8𝑘2𝛾2(1 − 𝐶1𝐶2) + (𝛾4 + (4𝑘2𝛼1𝛼2)2)𝑆1𝑆2}, 

𝛾 = 2𝑘2 + 𝑐2
−2𝑠2,   (30) 

𝐶𝑗 = ch(ℎ𝛼𝑗),  𝑆𝑗 =
sh(ℎ𝛼𝑗)

𝛼𝑗
, 𝛼𝑗 = √𝑘2 + 𝑐𝑗

−2𝑠2, j = 1,2   (31) 

Hankel transform ZH(k) of the Z(r) source on the surface (7) 

𝑍𝐻(𝑘) =
3(sin (𝑟0𝑘)−𝑟0𝑘cos (𝑟0𝑘))

2𝜋𝑟0
3𝑘3

  (32) 

Analysis of the elements of the characteristic equation D(k, 
s)=0 was carried out for example in [37]. 

In order to receive the function 𝑤𝛿(0,0, 𝑡) for the initial mo-
ment 𝑡 → 0 we find the properties of the Laplace transform for 
𝑠 → ∞   

𝑤𝛿
𝐿𝐻(𝑘, 𝑧, 𝑠) =

𝑐2
2𝑒

−
𝑧𝑠
𝑐1

𝜇𝑐1
(

1

𝑠
−

𝑐1𝑧𝑘2

2𝑠2
+ ⋯ ) −

2𝑐2
4𝑘2𝑒

−
𝑧𝑠
𝑐2

𝜇𝑐1𝑠3
 .   (33) 

In the initial moment we get 

𝑤𝛿(0,0, 𝑡) =
𝑐2

2

𝜇𝑐1
𝐻(𝑡)𝑍(0), 𝑡 → 0   (34) 

𝜎𝑧𝑧,𝛿(0, 𝑧, 𝑡) = −𝛿(𝑡 − 𝑧/𝑐1)𝑍(0), 𝑡 − 𝑧/𝑐1 → 0   (35) 

Asymptotics (35) shows that for the calculation of stresses  it 
is better to use 

𝜎𝑧𝑧(𝑟, 𝑧, 𝑡) = ∫ 𝜎𝑧𝑧,𝐻(𝑟, 𝑧, 𝑡 − 𝑡′)
𝑑

𝑑𝑡′
𝑃(𝑡′)𝑑𝑡′

𝑡

0
    (36) 

where 𝜎𝑧𝑧,𝐻(𝑘, 𝑧, 𝑠) = 𝜎𝑧𝑧,𝛿(𝑘, 𝑧, 𝑠)/𝑠.  

The calculations of the inverse integral Laplace and Hankel 
transformations were performed in the same way as in the papers 
[36,38]. 

3.2. Solution method for the impactor 

Integrating the equation (10) using the Laplace transform and 
the initial conditions (11), we obtain 

𝑊(𝑡) = 𝑉0𝑡 −
1

𝑚1
∫ (𝑡 − 𝑡′)𝑃(𝑡′)𝑑𝑡′

𝑡

0
    (37) 

On the other hand, according to the theory of Hertz [6], we 
can assume  

𝛼𝐻 = (𝑃/𝐾)2/3 = 𝑘0𝑃2/3  or  𝑃 = 𝐾𝛼𝐻
3/2

   (38) 

where K is determined from the equation [6] 

𝐾 =
4𝐸∗√𝑟0

3
 , 𝑘0 = 𝐾−2/3 ,  

1

𝐸∗ =
1−𝜈1

2

𝐸1

+
1−𝜈2

𝐸
   (39) 

Taking (9), (37), (38) into account, we obtain the equation  

𝑉0𝑡 −
1

𝑚1
∫ (𝑡 − 𝑡′)𝑃(𝑡′)𝑑𝑡′

𝑡

0
= 𝑘0𝑃(𝑡)2/3 + 𝑤(0,0, 𝑡)   (40) 

At the moment of time t = tn = nt, n = 0, 1, 2, … , 𝛥𝑡 integra-
tion time is assumed to take place 

𝑉0𝑡𝑛 −
1

𝑚1
∫ (𝑡𝑛 − 𝑡′)𝑃(𝑡′)𝑑𝑡′

𝑡𝑛

0
= 𝑘0𝑃(𝑡𝑛)2/3 + 𝑤𝑛    (41) 

where wn = w(0,0,tn - 1). 
In the initial moment t = 0 (n = 0), sample displacement W = 0, 

displacement of half-space w = 0, sample speed v = V0. 
In moment t = t1 (n = 1), sample displacement W(t1)= 

W1=V0 t1, deflection of half-space w(0,0,t0) = w1 = 0, impact force 
(pressure) P(t1) = P1 =K (W1–w1)3/2, acceleration of the sample 
a1 = – P1/m1, sample speed v(t1) = v1 =V0. 

In the time moment t = t2 (n = 2), sample displacement 

W(t2) = W2 = W1 + v1 t + a1(t)2/2, deflection of layer 
w(0,0,t1) = w2, impact force (pressure) P(t2) = P2 = K (W2–w2)3/2, 
acceleration of the sample a2 = – P2/m1, sample speed 

v(t2) = v2 = v1 + a1t . 
The further course of the calculations is obvious. Let us write 

directly the formulas related to the nth stage: 

𝑊(𝑡𝑛) = 𝑊𝑛 = 𝑊𝑛−1 + 𝑣𝑛−1∆𝑡 + 𝑎𝑛−1(∆𝑡)2/2    (42) 

𝑤𝑛 = ∆𝑡 ∑ 𝑤𝛿(0,0, 𝑡𝑛−1−𝑡𝑚)𝑛−2
𝑚=1 𝑃𝑚 +

∆𝑡

2
𝑤𝛿(0,0,0)𝑃𝑛−1   (43) 

𝑃(𝑡𝑛) = 𝑃𝑛 = 𝐾(𝑊𝑛– 𝑤𝑛)3/2    (44) 

𝑎𝑛 = −𝑃𝑛/𝑚1    (45) 

𝑣(𝑡𝑛) = 𝑣𝑛 = 𝑣𝑛−1 + 𝑎𝑛−1∆𝑡    (46) 

For the impactor impact issue with a 2h* thick plate, the con-
tact condition will be [19, 29]  

𝑊 = 𝛼𝐻 + 𝑤∗    (47) 

We can therefore obtain a single equation for only one dependent 
variable αH by differentiating equation (8) twice with respect to 
time and then subtracting this equation from equation (10). Taking 
into account condition (47), the following equation is obtained [15]: 

𝑑2𝛼𝐻

𝑑𝑡2 +
1

𝑚1
𝑃(𝛼𝐻) + 𝛼∗ 𝑑

𝑑𝑡
𝑃(𝛼𝐻) = 0   (48) 

The non-linear differential equation proposed by Zener [15] is 
transformed to provide a solution by simplifying the Hertzian force 
P as a function of local compression αH . Thus, equation (48) is 
rewritten as 

𝑑2𝛼𝐻

𝑑𝑡2 +
1

𝑚1
𝐾𝛼𝐻

3/2 +
3

2
𝛼∗𝐾𝛼𝐻

1/2 𝑑𝛼𝐻

𝑑𝑡
= 0   (49) 

under initial conditions: 

𝛼𝐻(0) = 0, 
𝑑𝛼𝐻

𝑑𝑡
= 𝑉0,  𝑡 = 0   (50) 

A problem formulated in this way can be transformed into a 
dimensionless form 

𝑑2𝛼

𝑑𝜏2 + 𝛼3/2  +
3

2
𝜆∗𝛼1/2 𝑑𝛼

𝑑𝜏
= 0   (51) 

under initial conditions: 

𝛼(0) = 0, 
𝑑𝛼

𝑑𝜏
= 1,  𝜏 = 0   (52) 

where  = H / (TV0) ,   = t / T , T = (m1)2/5V0-1/5K-2/5 . 

𝜆∗ = 𝛼∗𝐾𝑉0
1/2

𝑇3/2.   (53) 
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By solving the problem (51), (52) the semi-imperial formula for 
the coefficient of restitution was derived Rf* [15] as a function of 
inelasticity parametr λ*  

𝑅𝑓
∗ = exp (−1.7191𝜆∗).   (54) 

4. NUMERICAL RESULTS 

A numerical analysis of the collision of a copper test sample 
with a steel anvil was carried out [1]. The parameters are given in 
Tab. 1. The mass of the tested sample m1 = 0.0122 kg, sample 
radius r0 = 0.004 m, collision speed V0 = 10 m s-1 i V0 = 100 m s-1.  

For the problem under consideration [39], the A = 

(πr03/m1)1/2(V0/c1)3/2 = 0.78510-3  parameter was calculated. Due 
to the low value of αA, the influence of the super-seismic state on 
the course of the impact can be neglected as a whole.  

Tab. 1. Mechanical properties of steel and copper 

Properties copper steel 

Longitudinal wave speed c1 [m s-1] 4597 5994 

Shear wave speed c2
 [m s-1] 2263 3204 

Density  [kg m-3] 8960 7830 

Coefficient  λ [GPa] 97.53 120.6 

Shear modulus of elasticity G,  [GPa] 45.9 80.4 

Poisson number  [-] 0.34 0.3 

Young's module E [GPa] 123 209 

Yield point Ry [MPa] 57 1000 

Tensile strength Rm [MPa] 227 1200 

Figures 2-5 show the time courses of the impactor character-
istics during impact. It can be seen that, initially, the force acting 
on the impactor P(t) during impact increases and reaches a max-
imum of Pmax at tmax, Pmax = P(tmax).  

 
Fig. 2. Variation in impact force P over time for impact velocity  

 V0 = 10 m s-1 

A graph of the P(t) relationship is shown in Figure 2 for differ-
ent layer thicknesses. Impact velocity V0=10 m s-1. As the layer 
thickness increases, the values of Pmax and tmax and for thickness 
h above 10 r0 the layer can be regarded as a half-space. Time of 

the event ts decreases with increasing layer thickness, P(ts) = 0. In 
case of impactor collision with an elastic body tmax is less than half 
the impact time ts. The sudden decrease of the impact force value 
observed in the figures is attributed to plasticity of the impact [40] 
and contact adhesion [41,42]. 

Figure 3 shows the change in impact force on the impactor P 
over time during a Hertz impact for an impact velocity of 
V0=100 m s-1. An increase in impact velocity leads to an increase 
in the maximum value of the interaction force Pmax and reducing 
the impact time ts  and tmax . Qualitatively, the P runs have the 
same appearance. The quantitative values of the impact parame-
ters are given in Tables 1 and 2 respectively for the impact veloci-
ty V0=10 m s-1 and V0=100 m s-1.  

 
Fig. 3. Time variation of force on impactor P during Hertz impact for  

 velocity V0=100 m s-1. 

 

Fig. 4. Variation of the impactor velocity v in time during a Hertzian  
  impact for the velocity V0=10 m s-1 

Figures 4 and 5 show the velocity of the impactor v(t) under 
impact with a layer of different thicknesses at different initial veloc-
ities. The velocity of the bumper decreases due to the force P(t) to 
zero at a time greater than tmax, so it changes sign and reaches 
Vs=v(ts) at time ts. The rebound velocity of the impactor will be 
used to calculate the coefficient of restitution Rf = Vs/V0. 
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The numerical values of Rf are shown in Tables 2 and 3. This 
coefficient is the ratio of the velocity of the body after impact v(ts) 
to the velocity just before impact V0. As the thickness of the layer 
increases, the rebound velocity Vs increases and for thickness h 
above 10 r0 the rebound velocity equals the rebound velocity from 
the elastic half-space.  

 
Fig. 5. Change of the impactor speed v in time during a Hertzian impact  

 for the collision velocity V0=100 m s-1 

 
Fig. 6. Change of half-space deflection w in time during a Hertzian impact  

 for the collision velocity V0=10 m s-1 

In Figures 6 and 7 the displacement of the surface of the layer 
w(t)=w(0,0,t) of different thickness during collision with the im-
pactor at different initial speeds V0  = 10 m s-1 and 100 m s-1 is 
shown. The displacement w(t) for a small layer thickness (h = r0) 
increases with time and reaches the greatest significance for t = ts. 
Increasing the layer thickness causes the appearance of a maxi-
mum in the w(t) relationship. An increase in the initial velocity 
causes an increase in the deflection of the layer at the collision 
point. Qualitatively, the deflections have the same appearance. 

Numerical parameter values presented in Tables 2 and 3. Col-

lision time ts decreases with increasing layer thickness from 46 s 

for thickness h = r0  = 4 mm to 40.20 s for thickness h = 10 r0 
(see the first row of Tab. 2). A tenfold increase in the collision 

speed leads to the collision time ts decreasing with increasing 

layer thickness from 34.30 s to 26.72 s (see the first row of 
Tab. 3). For such a speed, the duration of the collision ts is too 
long to see the moments of arrival of the longitudinal P wave, 
transverse S wave and Rayleigh R wave. For a thickness h = 5 r0, 
the time of collision with the layer does not differ from the time of 
collision with the elastic half-space.  

 
Fig. 7. Change of half-space deflection w in time during a Hertzian impact  

 for collision velocity V0=100 m s-1 

Tab. 2.  Parameters of collision of the sample with a plate of thickness h 
for V0 = 10 m s-1 

 h = 1 r0 h = 2 r0 h = 5 r0 h =10 r0 h =  

ts [s] 46.00 41.00 40.20 40.20 40.4 

t*s [s] 46.5 40.8 39.8 39.6 40.8 

tmax [s] 17.00 19.00 20.00 20.02 20.02 

t*max [s] 16.7 19.00 19.65 19.5 19.65 

Pmax [kN] 6.856 9.639 10.83 10.98 11.00 

P*max [kN] 6.812 9.7345 10.048 11.26 11.32 

Vs=v(ts) [m s-1] 3.44 7.68 9.65 9.98 10.0 

Rf = Vs/V0[-] 0.344 0.768 0.965 0.998 1.00 

λ* [-] (53) 0.6330 0.1582 0.025 0.0063 0.0016 

R*f  [-] (54) 0.3368 0.7618 0.9574 0.9892 0.9973 

Ea [mJ] 538 250 42.0 2.44 0.00 

Tab. 3.  Parameters of collision of the sample with a plate of thickness h 
for V0 = 100 m s-1 

 h = 1 r0 h = 2 r0 h = 5 r0 h =10 r0 h =  

ts [s] 34.3 27.40 26.72 26.72 27.0 

t*s [s] 34.05 26.3 25.1 24.5 24.98 

tmax [s] 10.08 12.16 13.12 13.28 13.28 

t*max [s] 10.00 11.75 12.4 12.5 12.5 

Pmax [kN] 86.9 134.3 158.8 161.5 161.5 

P*max [kN] 87.28 142.45 172.3 177.8 179. 

Vs=v(ts) [ms-1] 17.67 65.67 93.52 98.65 99.13 

Rf = Vs/V0[-] 0.177 0.657 0.935 0.986 0.991 

λ* [-] (53) 1.0032 0.2508 0.0401 0.0100 0.0025 

Rf* [-] (54) 0.1782 0.6498 0.9333 0.9829 0.9957 

Ea [J] 59.1 34.7 7.65 1.64 1.06 

0 10 20 30

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

h = r0

h = 2r0

h = 5r0

h = 10r0

t , s

v( t ) 10
-2

, m/s

0 10 20 30 40

0

0.04

0.08

0.12

h = r0

h = 2r0

h = 5r0

h = 10r0

w( t ) , mm

t , s

0 10 20 30

0

0.2

0.4

0.6

0.8

1

h = r0

h = 2r0

h = 5r0

h = 10r0

w( t ) , mm

t , s



DOI 10.2478/ama-2024-0062                                                                                                                                                          acta mechanica et automatica, vol.18 no.4 (2024) 

591 

Analysis of the numerical values of Pmax indicates that there is 
an increase from 6.856 kN to 10.98 kN with increasing layer thick-
ness for an impact velocity of 10 m s-1 and from 86.9 to 161.5 for 
V0 = 100 m s-1. We can also conclude that for layer thicknesses 
above h = 5 r0, the maximum value of the impactor force Pmax to 
the third significant digit does not differ from this value for the half-
space. 

The rebound velocity Vs = v(ts) increases from 3.44 m s-1 for 
layer thickness h = r0 to 9.98 m s-1 for h = 10 r0, initial velocity V0 = 
10 m s-1. For the initial velocity V0 = 100 m s-1, the rebound veloci-
ty increases from Vs = 17.67 m s-1 for the layer h = r0 to the value 
of 98.65 m s-1 for the layer with a thickness h = 10 r0. Fig. 8 shows 
the values of the restitution coefficient Rf = Vs/V0 as a function of 
the ratio of the layer thickness to the impactor diameter (h / r0) for 
the impact speed V0 = 10 m s-1 and V0 = 100 m s-1. As you can 
see from this figure, the coefficient of restitution increases and 
strive for the value of the coefficient of restitution for the elastic 
half-space.  

 
Fig. 8. Dependence of the coefficient of restitution Rf on the   

 dimensionless parameter  h / r0 for collision velocities V0=10 m s-1   
 and V0=100 m s-1 

The last rows in Tables 2-3 present the absorption energy Ea. 
The conversion of kinetic energy is transformed into strain energy 
resulting from deformation 

𝐸𝑎 =
𝑚1𝑉0

2

2
−

𝑚1𝑉𝑠
2

2
    (55) 

Research has shown that thin layers have the best ability to 
absorb energy. The deformation energy at impact decreases as 
the collision speed increases. 

Tables 2 and 3 show the corresponding kinematic and dynam-
ic values (marked with an asterisk) calculated according to solving 
problem (49), (50) (Zener model [15]) taking into account (8), (47). 
Comparing the values without asterisks with the values with aster-
isks, we see that they come very close to a thin slab with thick-
ness h = 2 h*. This allows us to carry out the calculation of the 
impact parameters in a much simpler way. 

Fig. 9, based on Tables 2 and 3, shows the results of the de-
pendence of the coefficient of restitution Rf on the dimensionless 

parameter * which is referred to in the literature as the inelasticity 
parameter[15]. Inelasticity is the dissipation of energy during a 

collision due to the formation of elastic waves which lift the energy 
away from the collision point. 

 
Fig. 9. Dependence of the coefficient of restitution Rf on inelasticity   

 parameter λ* for collision velocities V0=10 m s-1 and V0=100 m s-1.  
 Results from Tab. 2 presented in diamonds, results from Tab. 3  
 presented in circles, the solid line corresponds to formula (54)  

for Rf* 

For velocity V0 = 10 m s-1, the results are presented in dia-
monds and for V0 = 100 m s-1 they are presented in circles. The 
solid line corresponds to the semi-empirical relationship (54) of 

the coefficient of restitution  Rf* with * . The calculated results 
from the tables correlate well with this curve.  

5. SUMMARY 

A mathematical model of the dynamics of the contact system 
between a bumper and a layer of finite thickness during their 
collision has been developed. The proposed calculation method 
using classical Laplace and Hankel transforms allows to solve the 
problem of the spatial model of the body. 

The proposed analysis makes it possible to calculate the 
stresses and displacements in the elastic layer, as well as the 
kinematics of the impactor. 

Original elements of the paper include the proposed general 
approach to solving the contact dynamics problem. The approach 
presented is to determine the impact force on the sample P(t) 
during impact as a joint solution of the problem for the impactor 
and the problem for the elastic layer under the assumptions of 
Hertzian theory. The resulting force P(t) allows the determination 
of displacements and stresses. 

The calculations carried out showed that for layer thicknesses 
of more than five impactor diameters, the layer can be considered 
as a half-space. The model of the anvil will be a half-space.  

Let us point out that the Zener model [15] of the coefficient of 
restitution (54) for the elastic plate under the conditions consid-
ered agrees well with the results for the elastic layer including and 
for the half-space (Fig.9). 

The proposed method can be useful for the dynamic analysis 
of issues such as the collision of a sample with a layered  
body [43]. 
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