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Abstract: In this article, a well-known technique, the variational iterative method with the Laplace transform, is used to solve nonlinear 
evolution problems of a simple pendulum and mass spring oscillator, which represents the duffing equation. In the variational iteration 
method (VIM), finding the Lagrange multiplier is an important step, and the variational theory is often used for this purpose. This paper 
shows how the Laplace transform can be used to find the multiplier in a simpler way. This method gives an easy approach for scientists 
and engineers who deal with a wide range of nonlinear problems. Duffing equation is solved by different analytic methods, but we tackle 
this for the first time to solve the duffing equation and the nonlinear oscillator by using the Laplace-based VIM. In the majority of cases,  
Laplace variational iteration method (LVIM) just needs one iteration to attain high accuracy of the answer for linearization anddiscretization, 
or intensive computational work is needed. The convergence criteria of this method are efficient as compared with the VIM. Comparing  
the analytical VIM by Laplace transform with MATLAB’s built-in command Simulink that confirms the method’s suitability for solving  
nonlinear evolution problems will be helpful. In future, we will be able to find the solution of highly nonlinear oscillators. 

Keywords: Laplace variational iteration method, nonlinear problems, duffing equation, simple pendulum,  
                   mass and spring oscillator, Simulink

1. INTRODUCTION 

The theory of nonlinear systems can be used to solve prob-
lems in economics, chemistry, astronomy, physiology of nerves, 
start of turbulence, control of heartbeats, electronic circuits, cryp-
tography, secure communications and many other fields. In our 
modern world, the majority of systems are inherently nonlinear [1-
2]. A collection of nonlinear equations known as a nonlinear sys-
tem may be algebraic, differential, integral, fractional or a combi-
nation of these. A nonlinear system has been utilizedto describe a 
wide range of phenomena throughout the last few decades in the 
physical, social and life sciences. In natural phenomena, nonlinear 
dynamical systems, which describe changes in variables over 
time, are sometimes chaotic, unpredictable or illogical. Nonlinear 
oscillations play a significant role in nonlinear systems that arise in 
a variety of engineering applications and our daily lives. 

There are many methods to solve nonlinear problems, such 
as the Homotopy perturbation method (HPM) [3], which is used to 
solve attachment oscillations that occur in nanotechnology. The 
nonlinear oscillation system was studied using the Akbari Ganji 
method [4]. The energy balance method (EBM) [5] investigated 
the behavior of CNTnano resonators. The He-Elzaki method [6] is 
used to study the biological population model. The variational 
iteration method (VIM)—the Pade method [7]—is applied to solve 
a nonlinear oscillator with cubic and restoring forces. He’s multi-
ple-scale method [8] solved nonlinear vibrations. He’s parameter-
expansion method [9] solved the oscillation of the mass connect-
ed to the elastic wire. The damping duffing equation is solved 
using the multistage differential transform method [10]. Nonlinear 
one-dimensional K-dV equation arising in plasma physics is 
solved by using the auxiliary equation mapping method[11].The 

Zakharov–Kuznetsov (ZK) equation is an isotropic nonlinear 
evolution equation; the stability analysis of two-dimensional ZK 
equation is derived by applying the extended direct algebraic 
technique[12]. The solution for geophysical Korteweg–de Vries 
equation (GKdVE) is found with the help of the Hirota bilinear 
method (HBM) [13].Marin et al. [14] solved mixed problems in 
thermoelasticity of type III for Cosserat media. The most famous 
model of nonlinear sciences namely (2 + 1)- dimensional nonline-
ar spin dynamics of Heisenberg ferromagnetic spin chains (HFSC) 
model for the evaluation of optical travelling waves by employing 
unified method (UM) [15]. The reciprocal impacts of Young moduli 
and mass density of the wave propagation behaviours of function-
ally graded (FG) nanobeams are investigated by Ebrahimi et al. 
[16]. 

 In science and mathematics, a nonlinear system is the one 
where the change in output is not the same as the change in 
input. There is no well-established method for dealing with all 
types of nonlinear problems.The VIM was proposed in 1998 [17] 
and is widely used to solve a variety of nonlinear problems [18]. 
The major goal of this method is to build a correction function by 
using a general Lagrange multiplier that is properly chosen so that 
its correction solution is better than the initial trail function. A large 
number of results based on the VIM fail to explain it; in many 
situations, the integral of the correction function is convolution; as 
a result, a modification of the Laplace transform should be used. 
The Lagrange multiplier is a key part of the VIM. To do this, varia-
tional theory is used. The Lagrange multiplier is so much simpler 
to identify with the Laplace variational technique than with the 
variational theory [19]. 

Nonlinearity arising in the nature, science and technology 
does not hand easily. A number of difficulties are faced during 
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finding the solutions of nonlinear phenomena. The number of the 
above discussed exact solution methods has no capacity to deal 
all kind of nonlinear physical problems. Number of the computa-
tional methods used to solve the nonlinear dynamical problems 
[20-22] but analytical approaches are good as compared to the 
numerical approach because the physics of the problem under-
stand easily in the case analytical and semi-analytical methods. 
Some nonlinear problems do not handle easily because the factor 
stability is much important. The identification of the Lagrange 
multiplier in the technique requires the knowledge of the variation-
al theory, and the complex identification process might hinder 
applications of the method to practical problems. This paper sug-
gests using the Laplace transform, which can be found in all math 
books, to make the process of identifying things easier. In this 
article, a Laplace variational iteration technique, combined with 
the VIM and the Laplace transform, presents a numerical solution 
to the duffing equation by using MATLAB’s built-in command 
Simulink that confirms suitability for solving nonlinear evolution 
problems. 

2. METHOD SUMMARY 

Consider a general nonlinear oscillator equation is given as 
follows: 

𝑣′′(𝑡) + 𝑓(𝑣) = 0    (2.1) 

Initial conditions are as follows: 

𝑣(0) = 𝐴, 𝑣′(0) = 0 

Eq. (2.1) can be rewrite as follows: 

𝑣′′ + 𝜔2𝑣 + ℎ(𝑣) = 0                       (2.2) 

where 𝜔 is the frequency which can be calculated as follows: 

ℎ(𝑣) = 𝑓(𝑣) − 𝜔2𝑣 

The correctional functional for Eq. (2.2) is defined as follows 
for the VIM: 

𝑣𝑛+1(𝑡) = 𝑣𝑛(𝑡) + ∫ 𝜆(𝑡, 𝜂)[𝑣𝑛
′′(𝜂) +

𝑡

0
𝜔2𝑣𝑛(𝜂) +

ℎ~(𝑢𝑛)]𝑑𝜂,    𝑛 = 0,1,2, ….         (2.3) 

It is possible to derive the generic Lagrange multiplier λ from 
the immobile requirements of Eq. (3) with respect to vn by using 
variational theory [17]. The letter h stands for the restricted vari-
ant, and the number n after it means the nth approximation. Here, 
the Lagrange multiplier written is this form [22]: 

λ = λ(t − η)  

corrective functional employed in Eq. (2.3) is essentially the con-
volution; therefore, the Laplace transform is applied. Then, La-
place transform is applied to both sides of the Eq. (2.3). In this 
form, the correctional functional will be converted as follows: 

ℒ[𝑣𝑛+1(𝑡)] = ℒ[𝑣𝑛(𝑡)] + 

ℒ[∫ 𝜆(𝑡 − 𝜂)[𝑣𝑛
′′(𝜂) +

𝑡

0
𝜔2𝑣𝑛(𝜂) + ℎ∽(𝑢𝑛)]𝑑𝜂               (2.4) 

= ℒ[𝑣𝑛(𝑡)] + ℒ[𝜆(𝑡) ∗ (𝑣𝑛
′′(𝜂) + 𝜔2𝑣𝑛(𝜂) + ℎ∽(𝑢𝑛))] 

=  ℒ[𝑣𝑛(𝑡)] + ℒ[𝜆(𝑡)]ℒ[(𝑣𝑛
′′(𝜂) + 𝜔2𝑣𝑛(𝜂) + ℎ∽(𝑢𝑛))] 

=  ℒ[𝑣𝑛(𝑡)] + ℒ[𝜆(𝑡)][(𝑠2 + 𝜔2)ℒ[𝑣𝑛(𝑡)] − 𝑠𝑣𝑛(0) −
𝑣𝑛

′ (0) + ℒ[ℎ∽(𝑢𝑛)]]            (2.5) 
 

The value of λ can be determined by taking Eq. (2.5) as a sta-

tionary one with respect to vn(t): 

𝛿

𝛿𝑣𝑛
ℒ[𝑣𝑛+1(𝑡)] =

𝛿

𝛿𝑣𝑛
ℒ[𝑣𝑛(𝑡)] +

𝛿

𝛿𝑣𝑛
ℒ[𝜆(𝑡)][(𝑠2 +

𝜔2)ℒ[𝑣𝑛(𝑡)] −  𝑠𝑣𝑛(0) − 𝑣𝑛
′ (0) +  ℒ[ℎ∽(𝑢𝑛)]  

{1 +ℒ[𝜆(𝑡)](𝑠2 + 𝜔2)}
𝛿

𝛿𝑣𝑛
ℒ[𝑣𝑛(𝑡)] =0    

From above eq., we get the following equation: 

ℒ[𝜆(𝑡)] =
1

𝑠2+𝜔2          (2.6) 

From the above calculation, we suppose that  

𝛿

𝛿𝑣𝑛
ℒ[ℎ∽(𝑢𝑛)] = 0  

Applying the inverse Laplace transform to the Eq. (2.6), we 
get the following equation: 

𝜆(𝑡) = −
1

𝜔
𝑠𝑖𝑛𝑤𝑡   

By using Eq. (2.4), the required formula becomes in this form: 

ℒ[𝑣𝑛+1(𝑡)] =

ℒ[𝑣𝑛(𝑡)] −
1

𝜔
ℒ [∫ 𝑠𝑖𝑛𝑤(𝑡 − 𝜂)[𝑣𝑛

′′(𝜂) +
𝑡

0
𝜔2𝑣𝑛(𝜂) +

ℎ̃(𝑣𝑛)]] 𝑑𝜂  

ℒ[𝑣𝑛+1(𝑡)] = ℒ[𝑣𝑛(𝑡)] −
1

𝜔
ℒ[𝑠𝑖𝑛𝑤𝑡][𝑣𝑛

′′(𝜂) + 𝜔2𝑣𝑛(𝜂) +

ℎ̃(𝑣𝑛)] 

 

(2.7) 

 

 

As a result, the Lagrange multiplier may be found considera-
bly more quickly than with variational theory. 

3. APPLICATIONS 

Duffing’s equation is described in Section 3 where it is provid-
ed an example of nonuniformity arising from the occurrence of 
secular terms. We will see how the asymptotic expansion of the 
solution of Duffing’s equation can be rendered uniform by the 
laplace variational iteration method (LVIM)technique. In the follow-
ing paper, we will see how it arises in the description of two differ-
ent mechanical systems. It also governs certain electrical sys-
tems. It is an example of a class of nonlinear oscillators which we 
will study in some detail. The variable v can represent a variety of 
quantities such as an angle of oscillation, the deformation of an 
elastic system, a current or a voltage. The independent variable, t, 
is time. 

This section thoroughly examines three distinct practical ex-
amples of nonlinear oscillators. 

3.1. Mathematical modeling of the simple pendulum 

Fig. (1.1) shows a mass M attached by a rod having length L 
at point A. The mass M oscillates in a vertical direction due to 
gravity. The length of the rod is connected to a fixed point, and its 
weight is negligible. The force of gravity acts on the mass and 
tension in the rod. The tangential component of the arc of the 
circle on which the mass moves is driven by the 

force — Mgsinθ.A particle travelling on a circle with fixed radius 
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experiences tangential acceleration, which equals L(
d2θ

dT2) and 

Newton’s second law holds the governing Eq. [23]: 

𝑀𝐿
𝑑2𝜃

𝑑𝑇2
= −𝑀𝑔𝑠𝑖𝑛𝜃 

 

(3.1.1) 

 

Fig.1.  Motion of simple pendulum 

Consider that the pendulum is lifted from static position when 

θ = θ0 at T=0. The angle of oscillation is v =
θ

θ0
, and the pa-

rameter related to the frequency is Ω = √
g

L
; the governing equa-

tion can be written as follows: 

𝑑2𝑣

𝑑𝑇2 = −Ω
2 sin (𝜃0𝑣)

𝜃0
  (3.1.2) 

with the initial conditions v = 1 and 
dv

dT
= 0 when T=0 

If θ0is very small, a truncated Maclaurin can be used to ap-
proximate the sine term. When two terms are included in the 
expansion, we get the following: 

𝑑2𝑣

𝑑𝑇2 = −Ω
2

(𝑣 −
𝜃0

2𝑣3

6
)  

(3.1.3) 

Developing nondimensional time t = ΩT and the parameter 

ε =
θ0

2

6
 results to the Duffing’s equation which is non-linear in 

nature [23]. 

With initial condition: 

𝑣(0) = 1, 𝑣′(0) = 0   ,        

The general nonoscillator form of the Eq. (1) is given as fol-
lows: 

v′′ + ω2v + h(v) = 0  

where h(v) = −ω2v − v′′ − v + εv3 
The correctional functional is written as follows: 

ℒ[𝑣𝑛+1(𝑡)] =

ℒ[𝑣𝑛(𝑡)] + ℒ[∫ −
1

𝜔
𝑠𝑖𝑛𝑤(𝑡 − 𝜂)[𝑣𝑛

′′(𝜂) +
𝑡

0
𝜔2𝑣𝑛(𝜂) +

ℎ∽(𝑢𝑛)]𝑑𝜂        (3.1.5) 

ℒ[𝑣𝑛+1(𝑡)] = ℒ[𝑣𝑛(𝑡)] −
1

𝜔
ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[𝑣𝑛

′′ + 𝑣𝑛 − 𝜀𝑣𝑛
3]  

putting 𝑛 = 0 we have, 

ℒ[𝑣1(𝑡)] = ℒ[𝑣0(𝑡)] −
1

𝜔
ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[𝑣0

′′ + 𝑣0 −

𝜀𝑣0
3]  

 

(3.1.6) 

Assume the initial solution is v0(t) = Acoswt,  

[𝑣1ℒ(𝑡)] = ℒ[𝐴𝑐𝑜𝑠𝑤𝑡] −
1

𝜔
ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[−𝐴𝜔2𝑐𝑜𝑠𝑤𝑡 +

𝐴𝑐𝑜𝑠𝑤𝑡 −
𝜀𝐴3

4
(𝑐𝑜𝑠3𝑤𝑡 + 3𝑐𝑜𝑠𝑤𝑡)  

After some calculations, above expression is written as fol-
lows: 

ℒ[𝑣1(𝑡)] =

ℒ[𝐴𝑐𝑜𝑠𝑤𝑡] −
1

𝜔
(−𝐴𝜔2 + 𝐴 −

3𝜀𝐴3

4
) ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[𝑐𝑜𝑠𝑤𝑡] +

𝜀𝐴3

4𝜔
 ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[𝑐𝑜𝑠3𝑤𝑡]                    (3.1.7) 

Taking the inverse Laplace transform to the Eq. (3.1.7), we 
get the first-order approximate results in this form: 

𝑣1(𝑡) =  𝐴𝑐𝑜𝑠𝑤𝑡 −
1

𝜔
(−𝐴𝜔2 + 𝐴 −

3𝜀𝐴3

4
) (

1

2
𝑡𝑠𝑖𝑛𝑤𝑡) +

1

𝜔
(

𝜀𝐴3

4
)(

1

8𝜔
(𝑐𝑜𝑠𝑤𝑡 − 𝑐𝑜𝑠3𝑤𝑡)                                         (3.1.8) 

For no secularterm in Eq. (3.1.8), we have the following equa-
tion: 

−
1

ω
(−Aω2 + A −

3εA3

4
) = 0                                  (3.1.9) 

This results in the expression for the system’s angular fre-
quency. 

𝜔 = √1 −
3𝜀𝐴2

4
                                  (3.1.10) 

 
Fig. 2. Numerical results for simple pendulum obtained by Simulink 

Mathematical modelling of the simple pendulum whose results 
are compared with MATLABbuilt-in command Simulinkis shown in 
Figs 2, 3, 5, 7, and 8. Model-based design is an approach that 
market-leading firms use to revolutionizedthe creation of complex 
systems. This approach involves the systematic use of models 
throughout the entire process with the assistance of built-in tools 
from MATLAB. Model-based systems engineering (MBSE) refers 
to the process of applying models in order to support the entire 
lifespan of a system. The development process can be bridged 
with Simulink from requirements and system architecture all the 
way to the precise component design, implementation and testing 
of the entire system. The solution pots for all discussed problems 
are also shown in Figures4and6.The graphical depiction of the 
general function is known as a sine wave. The sine wave can be 
recognised by its signature “W” shape, which indicates that it 
oscillates in a periodic and uniform manner both above and below 
0. The sine function is a type of trigonometric function that maps 

the set of all nonnegative real numbers to the interval [1,1]. This 
means that the sine function accepts as an input any non-negative 

𝑣′′ + 𝑣 − 𝜀𝑣3 = 0  (3.1.4) 
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real number and returns output as a value that falls somewhere in 

the range of [1,1]. In the modelling of periodic occurrences and 
processes that adhere to recognizable cyclical patterns, the sine 
function and sine waves are two important building blocks. 

 
Fig.3. Sinewave plot for the solution of the Duffing equation of simple 

pendulum against ε = 0.18, A = 0.1 

3.2. Mathematical modelling of a mass and spring oscillator 

Suppose a mass M is attached to the fixed ends A and B. 

Each spring’s natural length is L, and its spring constant is Λ.The 
distance between A and B is 2H, where H>L. The mass is re-

leased from AB by a perpendicular distance X0. The mass swings 
along a path perpendicular to the point AB. The spring forces F 
fluctuate linearly with the extension while gravity is ignored [23]. 

 
Fig. 4.  Motion of mass and Spring oscillator 

𝐹 =Λ(
√𝐻2+𝑋2−𝐿

𝐿
)  

(3.2.1) 

Newton’s seconds law holds. 

𝑀
𝑑2𝑋

𝑑𝑇2 = −2𝐹𝑐𝑜𝑠𝜃  and 𝑐𝑜𝑠𝜃 =
𝑋

√𝐻2+𝑋2
 

𝑀
𝑑2𝑋

𝑑𝑇2 = −
2Λ

𝐿
𝑋(1 −

𝐿

√𝐻2+𝑋2
)  (3.2.2) 

When the distance X is very small as compared with H, then 
inverse square root term can be changed by truncated Maclaurin 
expansion. 

When two terms are established in the expression, we have 
the following equation: 

𝑑2𝑋

𝑑𝑇2 == −
2Λ

𝐿
𝑋 [1 −

𝐿

𝐻
(1 −

1

𝐿

𝑋2

𝐻2)]  (3.2.3) 

Similarly, the nondimensional displacement 𝑣 =
𝑋

𝑋0
  and the 

frequency parameter Ω = √2Λ(𝐻 − 𝐿)𝑀𝐿𝐻 the govern the 

equation;then, we have the following equation: 

𝑑2𝑣

𝑑𝑇2 = −Ω
2

(𝑣 +
𝐿

2(𝐻−𝐿)𝐻2 𝑉3)  (3.2.4) 

Then, for non-dimensional time 𝑡 =  ΩT and the parameter 

𝜀 =
𝐿𝑋0

2

2(𝐻−𝐿)𝐻0
2, we get the duffing Eq. [23]: 

𝑑2𝑣

𝑑𝑡2
+ 𝑣 + 𝜀𝑣3 = 0 

𝑑2𝑣

𝑑𝑡2 + 𝑣 + 𝜀𝑣3 = 0 
 (3.2.5) 

With initial conditions: 

𝑣(0) = 1 ,        𝑣′(0) = 0 

We use the VIM by Laplace transform to solve the Eq. (3.2.5). 
To obtain the correctional functional, the general nonoscillator 
form of the Eq. (3.2.5) is given as follows: 

𝑣′′ + 𝜔2𝑣 + ℎ(𝑣) = 0  

where ℎ(𝑣) = −𝜔2𝑣 − 𝑣′′ − 𝑣 − 𝜀𝑣3 
The correctional functional is written as follows: 

ℒ[𝑣𝑛+1(𝑡)] =

ℒ[𝑣𝑛(𝑡)] + ℒ[∫ −
1

𝜔
𝑠𝑖𝑛𝑤(𝑡 − 𝜂)[𝑣𝑛

′′(𝜂) +
𝑡

0
𝜔2𝑣𝑛(𝜂) +

ℎ∽(𝑢𝑛)]𝑑𝜂  

ℒ[𝑣𝑛+1(𝑡)] = ℒ[𝑣𝑛(𝑡)]
1

𝜔
ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[𝑣𝑛

′′ + 𝑣𝑛 + 𝜀𝑣𝑛
3]           

   (3.2.6) 

For an approximate solution, put 𝑛 = 0;then, we have the fol-
lowing equation: 

Suppose the initial condition is 𝑣0(𝑡) = 𝐴𝑐𝑜𝑠𝑤𝑡, the Eq. 
(3.2.7) is in this form: 

ℒ[𝑣1(𝑡)] = ℒ[𝑣0(𝑡)] −
1

𝜔
ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[𝑣0

′′ + 𝑣0 + 𝜀𝑣0
3]  

 

 

 

 (3.2.7) 

ℒ[𝑣1(𝑡)] = ℒ[𝐴𝑐𝑜𝑠𝑤𝑡] −
1

𝜔
ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[−𝐴𝜔2𝑐𝑜𝑠𝑤𝑡 +

𝐴𝑐𝑜𝑠𝑤𝑡 + 𝜀𝐴3𝑐𝑜𝑠3𝑤𝑡]  

 ℒ[𝑣1(𝑡)] = ℒ[𝐴𝑐𝑜𝑠𝑤𝑡] −
1

𝜔
ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[−𝐴𝜔2𝑐𝑜𝑠𝑤𝑡 +

𝐴𝑐𝑜𝑠𝑤𝑡 +
𝜀𝐴3

4
(𝑐𝑜𝑠3𝑤𝑡 + 3𝑐𝑜𝑠𝑤𝑡)  

After some calculations, we get the following expressions as 
follows: 

ℒ[𝑣1(𝑡)] =

ℒ[𝐴𝑐𝑜𝑠𝑤𝑡] −
1

𝜔
(−𝐴𝜔2 + 𝐴 +

3𝜀𝐴3

4
) ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[𝑐𝑜𝑠𝑤𝑡] −

𝜀𝐴3

4𝜔
 ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[𝑐𝑜𝑠3𝑤𝑡]                          (3.2.8) 

Applying the inverse Laplace transform to the Eq. (3.2.8),  
we get the first-order approximate results in this form: 

For no secularterm in Eq. (3.2.9), we have the following equa-
tion: 

𝑣1(𝑡) =  𝐴𝑐𝑜𝑠𝑤𝑡 −
1

𝜔
(−𝐴𝜔2 + 𝐴 +

3𝜀𝐴3

4
) (

1

2
𝑡𝑠𝑖𝑛𝑤𝑡) −

1

𝜔
(

𝜀𝐴3

4
)(

1

8𝜔
(𝑐𝑜𝑠𝑤𝑡 −

𝑐𝑜𝑠3𝑤𝑡)   

 

 

        (3.2.9) 

−
1

𝜔
(−𝐴𝜔2 +

3𝜀𝐴3

4
) = 0                      (3.2.10) 
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This results in the expression for the system’s angular fre-
quency. 

𝜔 = √1 +
3𝜀𝐴2

4
  

           (3.2.11) 

The expression for angular frequency of the second problem 
in Eq. (3.2.11) is exactly the same  Tables 1 and 2 as obtained by 
the EBM [27] in Eq. (4.4) 

 
Fig.5. Numerical results for Mass and spring oscillator obtained by Sim-

ulink A1 

 
Fig.6. Sinewave plot for the solution of the Duffing equation of Mass  

 and Spring Oscillator against ε = 0.18, A = 0.1 

Tab. 1. Comparison of obtained results of different kinds of analytical  
             approaches for Eq. (3.2.5) 

𝜀𝐴2 𝜔𝐹𝐸𝐵𝑀−𝑐[30] 
𝜔𝑆𝐻𝐵𝑀 [32] 

 

𝜔𝑅𝐸𝐵𝑀[27] 

 

𝜔𝐿𝑉𝐼𝑀  

 

0.5 
1.1619 

0.76% 

1.1707 

0.001% 

1.1707 

0.001% 

1.1707 

0.001% 

1 1.3038 1.3178 1.3178 1.3178 

 1.06% 0.0043% 0.0043% 0.0043% 

5 2.1213 2.1509 2.1507 2.1507 

 1.35% 0.0262% 0.015% 0.015% 

    10 2.8284 2.8678 2.8672 2.8672 

 1.33% 0.0419% 0.0217% 0.0217% 

     100 8.4261 8.5390 8.5360 8.5360 

 1.25% 0.0643% 0.0287% 0.0287% 

      1000 26.476 26.8289 26.8187 26.8187 

 1.24% 0.0681% 0.03011% 0.03011% 

5000 59.169 59.9563 59.9337 59.9337 

 1.24% 0.06783% 0.0301% 0.0301% 

3.3. Mathematical modelling of the cubic quintic order 
duffing equation  

Consider a fifth-order nonlinear duffing equation in this form 
[24-26]: 

𝑣′′ + 𝑎𝑣 + 𝑏𝑣3 + 𝑐𝑣5 = 0  (3.3.1) 

With initial condition, 

𝑣(0) = 1 ,        𝑣′(0) = 0 

To obtain the correctional functional, the general nonlinear os-
cillator form of the Eq. (3.3.1) is given as follows: 

𝑣′′ + 𝜔2𝑣 + ℎ(𝑣) = 0 

where ℎ(𝑣) = −𝜔2𝑣 − 𝑣′′ − 𝑎𝑣 − 𝑏𝑣3 − 𝑐𝑣5 
The correctional functional of Eq. (3.3.1) can be rewrite as fol-

lows: 

ℒ[𝑣𝑛+1(𝑡)] =

ℒ[𝑣𝑛(𝑡)] + ℒ[∫ −
1

𝜔
𝑠𝑖𝑛𝑤(𝑡 − 𝜂)[𝑣𝑛

′′(𝜂) +
𝑡

0
𝜔2𝑣𝑛(𝜂) +

ℎ∽(𝑢𝑛)]𝑑𝜂      (3.3.2) 

Putting n=0 in Eq. (3.3.2), we get the following equation: 

ℒ[𝑣1(𝑡)] = ℒ[𝑣0(𝑡)] −
1

𝜔
ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[𝑣0

′′ + 𝑎𝑣0 + 𝑏𝑣0
3 +

𝑐𝑣0
5]      (3.3.3) 

Let us consider the initial condition is 𝑣0(𝑡) = 𝐴𝑐𝑜𝑠𝑤𝑡, then 
Eq. (3.3.3) in this form: 

ℒ[𝑣1(𝑡)] = ℒ[𝐴𝑐𝑜𝑠𝑤𝑡] −
1

𝜔
ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[−𝐴𝜔2𝑐𝑜𝑠𝑤𝑡 +

𝐴𝑎𝑐𝑜𝑠𝑤𝑡 + 𝐴3𝑏𝑐𝑜𝑠3𝑤𝑡 + 𝐴5𝑐𝑐𝑜𝑠5𝑤𝑡]  

After some modification, the above expression can be written 
as follows: 

ℒ[𝑣1(𝑡)] = ℒ[𝐴𝑐𝑜𝑠𝑤𝑡] −
1

𝜔
(−𝐴𝜔2 + 𝐴𝑎 +

3𝑏𝐴3

4
+

5𝑐𝐴5

8
) ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[𝑐𝑜𝑠𝑤𝑡] −            

1

𝜔
(

5𝑐𝐴5

16
+

1𝑏𝐴3

4
) ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[𝑐𝑜𝑠3𝑤𝑡] −

1

𝜔
(

𝐴5𝑐

16
)ℒ[𝑠𝑖𝑛𝑤𝑡]ℒ[𝑐𝑜𝑠5𝑤𝑡]

                    (3.3.4) 

Taking the inverse Laplace transform on Eq. (3.3.4), we obtain 
the first-order approximate results as follows: 

For no secularterm in Eq. (3.3.5), we get the following equa-
tion: 

𝑣1(𝑡) =  𝐴𝑐𝑜𝑠𝑤𝑡 −
1

𝜔
(−𝐴𝜔2 +

𝐴𝑎 +
3𝑏𝐴3

4
+

5𝑐𝐴5

8
) (

1

2
𝑡𝑠𝑖𝑛𝑤𝑡)-

1

𝜔
(

5𝑐𝐴5

16
+

1𝑏𝐴3

4
)(

1

8𝜔
(𝑐𝑜𝑠𝑤𝑡 −

𝑐𝑜𝑠3𝑤𝑡) −
1

𝜔
(

𝐴5𝑐

16
)(

1

24𝜔
(𝑐𝑜𝑠𝑤𝑡 −

𝑐𝑜𝑠5𝑤𝑡)   

 

 

 

 

 

 

 

(3.3.5) 

−
1

𝜔
(−𝐴𝜔2 + 𝐴𝑎 +

3𝑏𝐴3

4
+

5𝑐𝐴5

8
) = 0  

which leads to the expression for the system’s angular frequency. 

𝜔2 = 1 +
3𝑏𝐴2

4
+

5𝑐𝐴4

8
   (3.3.6) 

𝜔 = √1 +
3𝑏𝐴2

4
+

5𝑐𝐴4

8
  

 
 (3.3.7)  
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The angular frequency of the problem third in Eq. (3.3.7) is al-
so similar as calculated by the HPM [28] in Eq. (13) and gamma 
function method [29] in Eq. (3.7). 

The Simulink  comparison with the exact solution is as follows: 

 

 

 
Fig. 7. Numerical results for Fifth order duffing equation obtained by 

Simulink A2 

 
Fig.8. Sinewave plot for the solution of the fifth order Duffing equation  

 against ε = 0.3, A = 1.5 

Tab.2.Comparison of the approximate frequency of Eq. (3.3.6)  
           with different A 

𝐴 GFM [29] Ref [33] Laplace-
based VIM 

Relative 
error 

0.1 1.003774 1.003759 1.003774 0.0015 

0.2 1.015382 1.015135 1.015382 0.0243 

0.4 1.065833 1.062073 1.065833 0.3540 

0.6 1.162325 1.144771 1.162325 1.5334 

0.8 1.317574 1.268069 1.317574 3.9040 

1 1.541104 1.436141 1.541104 7.3087 

Nomenclature Table:  𝜔 – angular frequency, 𝜆 – Lagrange multiplier,  

𝑡 – time,𝑣  – angle of oscillation or deformation of elastic system,  

𝜀𝑣3  – perturbation non-linear term, 𝐴𝑐𝑜𝑠𝜔𝑡  – initial trial function,  

ℒ –  Laplace transform, Ω𝑇–  non-dimensional time, VIM – variational 
iteration method, LVIM – Laplace variational iteration method,  
ZK – Zakharov–Kuznetsov, GKdVE–  geophysical Korteweg–de Vries 
equation,  HBM – Hirota bilinear method, FG – functionally graded 

 

4. CONCLUDING REMARKS 

In this article, we use the Laplace transform to find the La-
grange multiplier quickly and easily. Laplace transform is a very 
powerful mathematical tool that is used in many areas of science 
and engineering. As engineering problems become significantly 
more difficult, Laplace transforms can help solve them using a 
simple method. Scientists who are trying to solve nonlinear prob-
lems can use the VIM by finding the Lagrange multiplier. This 
article will talk about how Laplace transforms are used in physics, 
and then, it will talk about how they are used in the simple pendu-
lum, mass and spring oscillator. In the field of power systems 
engineering, a more complicated way to use load frequency con-
trol is also discussed in my recent research.The LVIM method is 
applied to solve the nonlinear problems, but there are a lot of 
nonlinear problems which are not solvable by this method be-
cause the limitations of our work are given as follows: if only the 
first derivative appears in the differential equation or only a con-
stant term is added in the differential equation, noninformality 
occurs in the solution two times, and we obtained two different 
values of angular frequency and that is why we are unable to find 
the amplitude frequency relationship. Moreover, the Lagrange 
multiplier of higher order for this method is not established; so,the 
researcher tries to find the Lagrange multiplier of higher order and 
solves the highly nonlinear problems in future. 
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APPENDIX 

 
Fig. A1. Simulink model for duffing equation 

 
Fig.A2. Simulink model for duffing equation against ε = 0.18 
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