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Abstract: In the paper the fractional order, state space model of a temperature field in a two-dimensional metallic surface is addressed. 
The proposed model is the two dimensional  generalization of the one dimensional, fractional order, state space of model of the heat  
transfer process. It uses fractional derivatives along time and length. The proposed model assures better accuracy with lower order than  
models using integer order derivatives. Elementary properties of the proposed model  are analysed. Theoretical results are experimentally 
verifed using data from industrial thermal camera. 
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Abbreviations: MIMO – Multiple Input Multiple Output, IO – Integer 
Order, FO – Fractional Order, CFE – Continuous Fraction Expan-
sion, IIR – Infinite Impulse Response, FIR – Finite Impulse Re-
sponse, PSE – Power Series  Expansion. 

1. INTRODUCTION 

The modelling of processes and plants hard to describe using 
another mathematical tools is one of the main areas of application 
of the FO calculus. 

Fractional models of different physical phenomena have been 
presented by many Authors for years. Fundamental results are 
presented e.g. by (1), (2) (the heating of an one dimensional 
beam), (3) (FO models of chaotic systems and Ionic Polymer 
Metal Composites), (4). Fractional Order diffusion processes are 
considered u.a. in (5), (6), (7). A collection of results using new 
Atangana-Baleanu operator can be found in (8). This book pre-
sents i.e. the FO blood alcohol model, the Christov diffusion equa-
tion and fractional advection-dispersion equation for groundwater 
transport processes. 

Recently FO models are used u.a. to describe a spread of 
diseases. This issue is considered e.g. in the papers: (9) (the 
modelling of the dynamics of COVID using Caputo-Fabrizio opera-
tor), (10) (the modelling of a transmission of Zika virus using 
Atangana-Baleanu operator). 

The state space FO models of the one dimensional heat 
transfer have been proposed in many previous papers of authors, 
e.g. (11), (12), (13), (14), (15), (16), (17), (18). These models 
employed different FO operators: Grünwald-Letnikov, Caputo, 
Caputo-Fabrizio and Atangana-Baleanu as well as discrete opera-
tors CFE and PSE. Each proposed model has been thoroughly 

theoretically and experimentally verified. In addition, each of them 
assures better accuracy in the sense of square cost function than 
its IO analogue. 

Models of temperature fields obtained with the use of thermal 
cameras are presented e.g. by (19), (20). Analytical solution of the 
two-dimensional, IO heat transfer equation is presented in the 
paper (21). Numerical methods of solution of PDE-s can be found, 
e.g., in (22). Fractional Fourier integral operators are analyzed 
u.a. by (23). It is important to note that a significant part of known 
investigations deals only with a steady-state temperature elds with 
omitting their dynamics. 

The paper (24) presents the generalization of FO models 
mentioned above to a two dimensional surface. It is important to 
note that in this paper the FO derivation only along the time is 
considered. The derivation along both space coordinates is de-
scribed by the 2'nd order operator. 

In this paper we propose and analyze a new, FO, state space 
model of heat transfer in a flat metallic surface. The model uses 
FO derivatives along time and space coordinates. Such an ap-
proach allows to obtain the better accuracy in the sense of a 
square cost function than model proposed previously. In addition, 
it is expected that satisfying accuracy will be achieved for relative-
ly low order. Our knowledge shows that such a model has not 
been proposed yet. The proposed approach can be employed e.g. 
to modelling and reconstruction images from thermal cameras. 

The paper is organized as follows. Preliminaries recall some 
basic ideas from fractional calculus, necessary to present results. 
Next the model using FO operator along the time is remembered. 
Furthermore its generalization applying FO operators along both 
time and space coordinates is presented and analyzed. Finally 
theoretical results are verified with the use of experimental data. 
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2. PRELIMINARIES 

At the beginning the non-integer order, integro-differential op-
erator is presented (see e.g. (1), (4), (25), (26)). 

Definition 1 (The elementary non integer order operator) The 
non-integer order integro-differential operator is defined as fol-
lows: 

𝐷𝑡
𝛼𝑔(𝑡)𝑎 = {

𝑑𝛼𝑔(𝑡)

𝑑𝑡𝛼
 𝛼 > 0

𝑔(𝑡) 𝛼 = 0

∫ 𝑔(𝜏)(𝑑𝜏)−𝛼
𝑡

𝑎
 𝛼 < 0

  (1) 

where a and t denote time limits for operator calculation, 𝛼 ∈ ℝ 
denotes the non integer order of the operation. 

Next an idea of complete Gamma Euler function is recalled 
(see for example (26)): 

Definition 2 (The complete Gamma function) 

𝛤(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0
  (2) 

An idea of Mittag-Leffler function needs to be given next. It is 
a non-integer order generalization of exponential function et and it 
plays crucial role in the solution of a FO state equation. The two 
parameter Mittag-Leffler function is defined as follows: 

Definition 3 (The two parameter Mittag-Leffler function) 

𝐸𝛼,𝛽(𝑥) = ∑
𝑥𝑘

𝛤(𝑘𝛼+𝛽)

∞
𝑘=0   (3) 

For β = 1 we obtain the one parameter Mittag-Leffler function: 

Definition 4 (The one parameter Mittag-Leffler function) 

𝐸𝛼(𝑥) = ∑
𝑥𝑘

𝛤(𝑘𝛼+1)

∞
𝑘=0   (4) 

The fractional order, integro-differential operator (1) is de-
scribed by different definitions, given by Grünwald and Letnikov 
(GL definition), Riemann and Liouville (RL definition) and Caputo 
(C definition). Relations between Caputo and Riemann-Liouville, 
between Riemann-Liouville and Grünwald-Letnikov operators are 
given e.g. in (27), (4). Discrete versions of these operators are 
analysed with details in (28). The C definition has a simple inter-
pretation of an initial condition (it is analogical as in integer order 
case) and intuitive Laplace transform. Additionally its value from a 
constant equals to zero, in contrast to e.g. RL definition. That's 
why in the further consideration the C definition will be used. It is 
recalled beneath. 

Definition 5 (The Caputo definition of the FO operator) 

𝐷𝑡
𝛼𝑓(𝑡)0

𝐶 =
1

𝛤(𝑉−𝛼)
∫

𝑓(𝑉)(𝜏)

(𝑡−𝜏)𝛼+1−𝑉

∞

0
𝑑𝜏  (5) 

In (5) V is a limiter of the non-integer order: V−1 ≤ α < V. If V = 1 
then consequently 0 ≤ α < 1 is considered and the definition (5) 
takes the form: 

𝐷𝑡
𝛼𝑓(𝑡)0

𝐶 =
1

𝛤(1−𝛼)
∫

𝑓̇(𝜏)

(𝑡−𝜏)𝛼

∞

0
𝑑𝜏  (6) 

Finally a fractional linear state equation using Caputo defini-
tion should be recalled. It is as follows: 

𝐷𝑡
𝛼𝑥(𝑡)0

𝐶 = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡)
  (7) 

where 𝛼 ∈ (0,1) is the fractional order of the state equation, 

𝑥(𝑡) ∈ ℝ𝑅 , 𝑢(𝑡) ∈ ℝ𝐿, 𝑦(𝑡) ∈ ℝ𝑃 are the state, control and 
output vectors respectively, A, B, C are the state, control, and 
output matrices. 

3. THE EXPERIMENTAL SYSTEM AND ITS FO MODEL 

The Figure 1 shows the simplified scheme of the considered 

heat system. This is the PCB plate of size X  Y pixels. The val-
ues of X and Y are determined by the resolution of a sensor of a 
camera. The plate is heated by at heater denoted by H. Its coordi-
nates are denoted by xh1, xh2, yh1 and yh2 respectively. The surface 
area SH of the heater is equal: 

𝑆𝐻 = 𝑑𝑥ℎ𝑑𝑦ℎ  (8) 

where: 

𝑑𝑥ℎ = 𝑥ℎ2 − 𝑥ℎ1
𝑑𝑦ℎ = 𝑦ℎ2 − 𝑦ℎ1

  (9) 

The temperature is measured using thermal camera, the area 
of measurement is configurable and denoted by S. Its coordinates 
are equal xs1, xs2, ys1 and ys2. The surface area SS of the meas-
urement area is equal: 

𝑆𝑆 = 𝑑𝑥𝑠𝑑𝑦𝑠  (10) 

where: 

𝑑𝑥𝑠 = 𝑥𝑠2 − 𝑥𝑠1
𝑑𝑦𝑠 = 𝑦𝑠2 − 𝑦𝑠1

  (11) 

More details about the construction of this laboratory system 
are given in the section "Experimental Results". The heat transfer 
in the surface is described by the Partial Differential Equation 
(PDE) of the parabolic type. All the side surfaces of plate are 
much smaller than its frontal surface. This allows to assume the 
homogeneous Neumann boundary conditions at all edges of the 
plate as well as the heat exchange on the surface needs to be 
also considered. It is expressed by coefficient Ra. The control and 
observation are distributed due to the size of heater and size of 
temperature eld read by camera. The heat conduction coefficient 
aw along both directions x and y is the same. 

X

Y

Heater

(0,0) (xh1,yh1)

(xh2,yh2)

(xs1,ys1)

(xs2,ys2)

Measured Area

 
Fig. 1. The simplified scheme of the experimental system.  
            Origin of the coordinate system is located in the left upper corner 
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The two dimensional, IO heat transfer equation has been con-
sidered in many papers (e.g. (29), (30), (31)). The fractional ver-
sion with fractional derivative along the time and 2'nd order integer 
derivative along the length is presented with details in the paper 
(24). 

This paper presents the model employing the fractional de-
rivatives along both coordinates. This allows to obtain better 
accuracy with its smaller size. 

The proposed model is as follows: 

{
 
 
 
 
 
 

 
 
 
 
 
 𝐷𝑡

𝛼𝑄(𝑥, 𝑦, 𝑡)0
𝐶 = 𝑎𝑤 (

𝜕𝛽𝑄(𝑥,𝑦,𝑡)

𝜕𝑥𝛽
+

𝜕𝛽𝑄(𝑥,𝑦,𝑡)

𝜕𝑦𝛽
) ,

−𝑅𝑎𝑄(𝑥, 𝑦, 𝑡) + 𝑏(𝑥, 𝑦)𝑢(𝑡),
𝜕𝑄(0,𝑦,𝑡)

𝜕𝑥
= 0, 𝑡 ≥ 0,

𝜕𝑄(𝑋,𝑦,𝑡)

𝜕𝑥
= 0, 𝑡 ≥ 0,

𝜕𝑄(𝑥,0,𝑡)

𝜕𝑦
= 0, 𝑡 ≥ 0,

𝜕𝑄(𝑥,𝑌,𝑡)

𝜕𝑦
= 0, 𝑡 ≥ 0,

𝑄(𝑥, 𝑦, 0) = 𝑄0, 0 ≤ 𝑥 ≤ 𝑋, 0 ≤ 𝑦 ≤ 𝑌,

𝑦(𝑡) = 𝑘0 ∫ ∫ 𝑄(𝑥, 𝑦, 0)𝑐(𝑥, 𝑦)𝑑𝑥𝑑𝑦.
𝑌

0

𝑋

0

  (12) 

In (12) α and β are non-integer orders of the system, aw > 0, 
𝑅𝑎 ∈ ℝ are coefficients of heat conduction and heat exchange, k0 
is a steady-state gain of the model, b(x, y) and c(x, y) are heater 
and sensor functions described as follows: 

𝑏(𝑥, 𝑦) = {
1, 𝑥, 𝑦 ∈ 𝐻
0, 𝑥, 𝑦 ∉ 𝐻

  (13) 

𝑐(𝑥, 𝑦) = {
1, 𝑥, 𝑦 ∈ 𝑆
0, 𝑥, 𝑦 ∉ 𝑆

  (14) 

Let 𝛺 ∈ ℝ𝑁 it be an appropriate restricted area. The fraction-

al Laplace operator 𝛥 =
𝜕𝛽(..)

𝜕𝑥𝛽
+

𝜕𝛽(..)

𝜕𝑦𝛽
 in 𝐿𝛽(𝛺) with Dirichlet or 

Neumann boundary conditions is a discrete operator. The discrete 
operator has only a point spectrum (see e.g. (32), pp. 204, 460). 
Without going into details it is generally known from the spectral 
theorem for compact and self-adjoint operators that all eigenval-

ues 𝜆𝑚,𝑛 of the Laplace operator 𝛥 in 𝐿2(𝛺) (with Dirichlet or 

Neumann boundary conditions) are non-negative, with finite multi-

plicities and 𝜆𝑛 → ∞ for 𝑛 → ∞. Additionally, there is in 𝐿2(𝛺) 
an orthonormal basis (complete system) composed of eigenfunc-

tions of the appropriate operator 𝛥. In special cases of the area 

𝛺 ∈ ℝ𝑁 (e.g. for a rectangle on a plane) analytical formulae for 
eigenvalues and eigenfunctions of the appropriate Laplace opera-
tor 𝛥 can be given (see e.g. (33) pp. 21, 26 for the Dirichlet prob-
lem or (34) p 133, 138, 301, 305). 

The Laplace operator 𝛥 is self-adjointed, it has compact re-

solvent a it builds the Hilbert base 𝐿𝛽(𝛺) = {𝑣: ∫ 𝑣𝛽(𝜉)𝑑𝜉 <

∞} with standard scalar product 〈𝑣, 𝑢〉 = ∫ 𝑢(𝜉)𝑦(𝜉)𝑑𝜉
𝑢

. 

The eigenfunctions and eigenvalues for the Laplace operator 

𝛥 and Dirichlet boundary conditions are given u.a. by (34), 
pp.133, 138, 301, 305 or in book (32), pp.253-255. 

The construction of the experimental system requires to as-
sume the homogenous Neumann boundary conditions. This yields 
the following form of eigenfunctions and eigenvalues: 

𝑤𝑚,𝑛(𝑥, 𝑦) =

{
  
 

  
 
1,𝑚, 𝑛 = 0,
2𝑌

𝜋𝑛
cos

𝑛𝜋𝑦

𝑌
, 𝑚 = 0, 𝑛 = 1,2,…

2𝑋

𝜋𝑚
cos

𝑚𝜋𝑥

𝑋
, 𝑛 = 0,𝑚 = 1,2, …

2

𝜋

1

√𝑚
𝛽

𝑋𝛽
+
𝑛𝛽

𝑌𝛽

𝛽
cos

𝑚𝜋𝑥

𝑋
cos

𝑛𝜋𝑦

𝑌
, 𝑚, 𝑛 = 1,2, …

 (15) 

𝜆𝑚,𝑛(𝑥, 𝑦) = −𝑎𝑤 [
𝑚𝛽

𝑋𝛽
+

𝑛𝛽

𝑌𝛽
] 𝜋𝛽 − 𝑅𝑎, 𝑚, 𝑛 = 1,2, … (16) 

Consequently the considered two dimensional heat equation 
(12) can be expressed as an infinite dimensional state equation: 

𝐷𝑡
𝛼𝑄(𝑡)0

𝐶 = 𝐴𝑄(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑄(𝑡)
  (17) 

where: 

𝐴𝑄 = 𝑎𝑤 (
𝜕𝛽𝑄(𝑥,𝑦)

𝜕𝑥𝛽
+

𝜕𝛽𝑄(𝑥,𝑦)

𝜕𝑦𝛽
) − 𝑅𝑎𝑄(𝑥, 𝑦),

𝐷(𝐴) = {𝑄 ∈ 𝐻2(0,1): 𝑄′(0) = 0, 𝑄′(𝑋) = 0, 𝑄′(𝑌) = 0},

𝑎𝑤 , 𝑅𝑎 > 0,

𝐶𝑄(𝑡) = 〈𝑐, 𝑄(𝑡)〉, 𝐵𝑢(𝑡) = 𝑏𝑢(𝑡).
 (18) 

The state vector Q(t) is defined as beneath: 

𝑄(𝑡) = [𝑞0,0, 𝑞0,1, 𝑞0,2, … , 𝑞1,0, 𝑞1,1, 𝑞1,2, … ]
𝑇

 (19) 

The main difference to the model presented in the paper (24) 

is that the non-integer order 𝛽 must be taken into account in the 
state, control and observation operators. This is presented below. 

The state operator A takes the following form: 

𝐴 = 𝑑𝑖𝑎𝑔{𝜆0,0, 𝜆0,1, 𝜆0,2, … , 𝜆1,0, 𝜆1,1, … , 𝜆2,2, … , , 𝜆𝑚,𝑛, … }.
 (20) 

The control operator takes the following form: 

𝐵 = [𝑏0,0, 𝑏0,1, 𝑏0,2, … , 𝑏1,0, 𝑏1,1, … ]
𝑇

. (21) 

𝑏𝑚,𝑛 = 〈𝐻,𝑤𝑚,𝑛〉 = ∫ ∫ 𝑏(𝑥, 𝑦)𝑤𝑚,𝑛(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑌

0

𝑋

0
. (22) 

Taking into account (15) we obtain: 

𝑏𝑚,𝑛 =

{
  
 

  
 
𝑆𝐻 , 𝑚, 𝑛 = 0,
2𝑌2

ℎ𝑦𝑛
2 𝑑𝑥ℎ𝑎𝑛ℎ𝑦 , 𝑚 = 0, 𝑛 = 1,2, …

2𝑋2

ℎ𝑥𝑚
2 𝑑𝑦ℎ𝑎𝑚ℎ𝑥 , 𝑛 = 0,𝑚 = 1,2, …

𝑘𝑚𝑛

ℎ𝑥𝑚ℎ𝑦𝑛
𝑎𝑚ℎ𝑥𝑎𝑛ℎ𝑦 , 𝑚, 𝑛 = 1,2, …

 (23) 

where SH, dxh and dyh are described by (8), (9) and: 

ℎ𝑥𝑚 =
𝑚𝜋

𝑋
,

ℎ𝑦𝑛 =
𝑛𝜋

𝑌
.

 (24) 

𝑘𝑚𝑛 =
2

𝜋

1

√𝑚
𝛽

𝑋𝛽
+
𝑛𝛽

𝑌𝛽

𝛽
.
 (25) 

𝑎𝑚ℎ𝑥 = sin(ℎ𝑥𝑚𝑥ℎ2) − sin(ℎ𝑥𝑚𝑥ℎ1) ,

𝑎𝑛ℎ𝑦 = sin(ℎ𝑦𝑛𝑦ℎ2) − sin(ℎ𝑦𝑛𝑦ℎ1) .
 (26) 
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The output operator is as beneath: 

𝐶 = [𝑐0,0, 𝑐0,1, 𝑐0,2, … , 𝑐1,0, 𝑐1,1, … ]. (27) 

where: 

𝑐𝑚,𝑛 = 〈𝑆, 𝑤𝑚,𝑛〉 = ∫ ∫ 𝑐(𝑥, 𝑦)𝑤𝑚,𝑛(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑌

0

𝑋

0
. (28) 

In (28) each element cm,n is expressed analogically, as (23): 

𝑐𝑚,𝑛 =

{
  
 

  
 
𝑆𝑠, 𝑚, 𝑛 = 0,
2𝑌2

ℎ𝑦𝑛
2 𝑑𝑥𝑠𝑎𝑛𝑠𝑦 , 𝑚 = 0, 𝑛 = 1,2, …

2𝑋2

ℎ𝑥𝑚
2 𝑑𝑦𝑠𝑎𝑚𝑠𝑥 , 𝑛 = 0,𝑚 = 1,2, …

𝑘𝑚𝑛

ℎ𝑥𝑚ℎ𝑦𝑛
𝑎𝑚𝑠𝑥𝑎𝑛𝑠𝑦 , 𝑚, 𝑛 = 1,2, …

 (29) 

In (29) hxm,yn and kmn are expressed by (24), (25), SH, dxh and 
dyh are described by (10), (11) and: 

𝑎𝑚𝑠𝑥 = sin(ℎ𝑥𝑚𝑥𝑠2) − sin(ℎ𝑥𝑚𝑥𝑠1) ,

𝑎𝑛𝑠𝑦 = sin(ℎ𝑦𝑛𝑦𝑠2) − sin(ℎ𝑦𝑛𝑦𝑠1) .
 (30) 

3.1. The decomposition of the model 

The decomposition of the model is done by the similar way as 
for the system considered in the paper (24). Due to the form of the 
state operator A (20) the system (17)-(29) can be splitted to infi-
nite number of independent scalar subsystems associated to 
particular eigenvalues: 

𝐷𝛼𝑄(𝑡) = 𝐴𝑄(𝑡) + 𝐵𝑢(𝑡),

𝐴𝑤𝑚,𝑛 = 𝜆𝑚,𝑛𝑤𝑚,𝑛.

𝐷𝛼𝑄(𝑡) = 𝑎𝑤 (
𝜕𝛽𝑄

𝜕𝑥𝛽
+

𝜕𝛽𝑄

𝜕𝑦𝛽
) − 𝑅𝑎𝑄 + 𝐵𝑢,

𝐷𝛼 ∑ ∑ 𝑞𝑚,𝑛
∞
𝑛=0

∞
𝑚=0 = 𝑎𝑤 (∑

𝜕𝛽𝑞𝑚,𝑛

𝜕𝑥𝛽
∞
𝑚=0 + ∑

𝜕𝛽𝑞𝑚,𝑛

𝜕𝑦𝛽
∞
𝑛=0 ) −

−𝑅𝑎 ∑ ∑ 𝑞𝑚,𝑛
∞
𝑛=0

∞
𝑚=0 + 𝐵𝑢,

𝐷𝛼𝑞𝑚,𝑛 = 𝑎𝑤 (
𝜕𝛽𝑞𝑚,𝑛

𝜕𝑥𝛽
+

𝜕𝛽𝑞𝑚,𝑛

𝜕𝑦𝛽
) − 𝑅𝑎𝑞𝑚,𝑛 + 𝑏𝑚,𝑛𝑢.

 (31) 

The form of equation (31) implies the decomposition of the 
system (7) into systems related to single eigenvalues 

𝜆𝑚,𝑛, 𝑚, 𝑛 = 0,1,2, …. This decomposition allows to easily 

compute the step and impulse responses of the system as a sum 
of responses of particular modes. This is presented below. 

Assume the homogenous initial condition in the equation 
(12):Q(x; y0) = 0. Then the step response is as follows: 

𝑦∞(𝑡) = ∑ ∑ 𝑦𝑚,𝑛(𝑡)
∞
𝑛=1

∞
𝑚=1 . (32) 

where m, n-th mode of response is as follows: 

𝑦𝑚,𝑛(𝑡) =
𝐸𝛼(𝜆𝑚,𝑛𝑡

𝛼)−1(𝑡)

𝜆𝑚,𝑛
𝑏𝑚,𝑛𝑐𝑚,𝑛. (33) 

In (33) 𝐸𝛼(. . ) is the one parameter Mittag-Leffler function (4), 

𝜆𝑚,𝑛, 𝑏𝑚,𝑛 and 𝑐𝑚,𝑛 are expressed by (16), (22) and (28) respec-

tively. 
Analogically the impulse response takes the following form: 

𝑔∞(𝑡) = ∑ ∑ 𝑔𝑚,𝑛(𝑡)
∞
𝑛=1

∞
𝑚=1 . (34) 

where m, n-th mode of response is as follows: 

𝑔𝑚,𝑛(𝑡) = 𝐸𝛼,𝛼(𝜆𝑚,𝑛𝑡
𝛼)𝑏𝑚,𝑛𝑐𝑚,𝑛. (35) 

In (35) 𝐸𝛼,𝛼(. . ) is the two parameters Mittag-Leffler function 

(3). 
During simulations it is possible to use of the finite - dimen-

sional sums only. Consequently (32) and (34) take the following 
form: 

𝑦𝑀,𝑁(𝑡) = ∑ ∑ 𝑦𝑚,𝑛(𝑡)
𝑁
𝑛=0

𝑀
𝑚=0 . (36) 

𝑔𝑀,𝑁(𝑡) = ∑ ∑ 𝑔𝑚,𝑛(𝑡)
𝑁
𝑛=0

𝑀
𝑚=0 . (37) 

The values of M and N assuring the assumed accuracy and 
convergence of the model can be estimated numerically or analyt-
ically. 

3.2. The convergence 

The convergence of the proposed model can be estimated us-
ing Rate of Convergence (ROC) defined as the steady-state value 
of the strongest damped mode of the step response. The estima-
tion of it in the one dimensional case was relatively simple due to 
particular modes of a step response are in descending order. 

In the two dimensional case particular modes of a step re-
sponse are not ordered. In addition, eigenvalues (16) can be 
multiple. This makes the analysis of the convergence of the pro-
posed model a little bit more complicated. The ROC is defined as 
follows: 

𝑅𝑂𝐶𝑀,𝑁 = min𝑀,𝑁 |
𝑏𝑀,𝑁𝑐𝑀,𝑁

𝜆𝑀,𝑁
|. (38) 

The relation (38) can be employed to numerical analysis of 
convergence in different places of measurement. This will be 
presented in the next section. 

4. EXPERIMENTAL VALIDATION OF RESULTS 

4.1. The experiments 

Experiments were done with the use of the heat system 
shown in the Figure 2. The dimensions of the PCB plate in pixels 
are: X = 380, Y = 290. The PCB is heated by the heater 170x20 
pixels with maximum power 10W located in points: xh1 = 100, yh1 = 
40 The temperature field is read using thermal camera OPTRIS PI 
450, connected to computer via USB and installed dedicated 
software OPTRIS PI CONNECT. The measured temperature 
covers range 0 – 250 °C, the sampling frequency is 80 Hz. The 
signal powering the heater is given from computer using NI Lab-
View, NI myRIO and amplifier. The maximum current from ampli-
fier equal 400mA at a voltage of 12V gives the maximum power 
4:8W. The tested PCB plate is not isolated from the environment. 
This implies that measurements strongly depend on ambient 
temperature. An another cause of noise during The considered 
experiment was done in hot summer. During experiments the step 
response of the system was investigated. The "zero" level de-
notes the heater switched off, the "one" level is the full power of 
the heater. 
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Fig. 2. The experimental system 

The temperature fields for both states are shown in the Figure 
3. This figure shows also the points of measurement of the step 
response, marked as "Area 1–4". Areas 1–3 are located in differ-
ent points of plate, area 4 covers the heater and it describes its 
mean temperature. Coordinates of all measuring areas are de-
scribed by the Table 1. The step responses in the selected areas 
1, 2, 3 and 4 are shown in the Figure 4. During calculations these 
coordinates x.. and y.. were given relative to X and Y. For exam-
ple, xs1 = 75 during calculating elements of C matrix with respect 
to (29) was equal: xs1 = 75/380 = 0.1974. 

Tab. 1. Coordinates of measuring areas (in pixels) 

Area xs1 ys1 xs2 ys2 

1 50 75 52 77 

2 200 100 202 102 

3 300 200 302 202 

4 120 40 250 60 

 

 
Fig. 3. The steady-state temperature fields for non-heated (top) and 

heated plate (bottom). The temperature strongly depends on  
ambient temperature. The colour scale in each case is different 

 
Fig. 4. The step responses of temperature in all tested fields 

4.2. The identification of the model 

The identification of parameters of the proposed model has 
been done via minimization of the Mean Square Error (MSE) cost 
function. This function describes the mean difference between the 
step responses of the plant and the model at the same time-
spatial mesh: 

𝑀𝑆𝐸 =
1

𝐾
∑ [𝑦(𝑘) − 𝑦𝑒(𝑘)]

2𝐾
𝑘=1   (39) 

In (39) K is the number of all collected samples, y(k) is the 
step response of the model, computed using (36), ye(k) is the 
experimental response measured in the same place and at the 
same time instants k with the use of thermal camera. The sample 
time during a step response measurement was equal 1[s]. In each 
case the mean temperature of the whole area is measured. 

The cost function (39) is a function of parameters α, β, aw and 
Ra. Its optimization was done with the use of the MATLAB function 
fminsearch, the step response was calculated using finite-
dimensional formula (36). Calculations were done using the fol-
lowing values of both orders: M = N = 3 and M = N = 5. 

Results are given in the tables 2. The comparison of step re-
sponses model vs experiment for M = N = 5 is presented in the 
Figure 5. 

The results in tables 2 and 3 show that the use of 3'rd order 
model assures practically the same accuracy in the sense of cost 
function (39) as the use of 5'th order model. This result is con-
firmed by the convergence analysis presented in the next subsec-
tion. 
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Next, if we recall the results from paper (24), the accuracy of 
the proposed model is practically the same as the accuracy of 8'th 
order model with integer order β = 2. 

Tables 4 and 5 compare the values of cost function (39) for all 
considered models: integer order, fractional order along the time 
and fractional order along both coordinates. 

Tab. 2. Identified parameters of the model for M = N = 3 

Area 𝜶 𝜷 aw Ra MSE (39) 

1 1.0794 1.8138 0.0033 0.0032 0.0110 

2 0.9356 1.6167 0.0538 0.0089 0.0217 

3 1.4878 1.8712 0.0208 0.0003 0.0059 

4 0.8156 2.0028 0.0100 0.0235 0.0627 

Tab. 3. Identified parameters of the model for M = N = 5 

Area 𝜶 𝜷 aw Ra MSE (39) 

1 1.0794 1.8641 0.0032 0.0032 0.0110 

2 0.9590 0.3959 0.0357 0.0057 0.0207 

3 1.4877 1.8712 0.0208 0.0003 0.0059 

4 0.8156 1.2400 0.0098 0.0234 0.0627 

Tab. 4. The cost function MSE for all models and M = N = 3 

Area 𝜶 = 𝟐,𝜷 = 𝟐 𝜶 ∈ ℝ,𝜷 = 𝟐 𝜶 ∈ ℝ,𝜷 ∈ ℝ 

1 0.0233 0.0170 0.0110 

2 0.0183 0.0205 0.0217 

3 0.0644 0.1429 0.0059 

4 1.1448 0.1145 0.0627 

Tab. 5. The cost function MSE for all models and M = N = 5 

Area 𝜶 = 𝟐,𝜷 = 𝟐 𝜶 ∈ ℝ,𝜷 = 𝟐 𝜶 ∈ ℝ,𝜷 ∈ ℝ 

1 0.0233 0.0170 0.0110 

2 0.0497 0.0205 0.0207 

3 0.0665 0.1162 0.0059 

4 0.0920 0.1145 0.0627 

Quite surprising is the large dispersion of values in the model 
parameters for points 1, 2 and 3, which are the same in terms of 
the material. This is probably caused by measurement disturb-
ances related to light reflections and different emissivity of the 
surface. 

 

 

 

 
Fig. 5. The step responses of the FO model (M = N = 5) vs real plant  
            for area 1(top) to 4 (bottom) 

4.3. The numerical analysis of the convergence 

The convergence of the proposed model can be estimated us-
ing the ROC coefficient expressed by (38). It is a function of place 
of measurement and a function of both orders of the model M and 
N. However to simplify the analysis assume that both orders are 
equal: M = N. The value of ROC as a function of order N for all 
tested places and for parameters given in the table 3 is presented 
in the Figure 38. From diagrams presented in Figure 38 it can be 
concluded that the maximum orders M = N = 4 assure the good 
accuracy of the model. Further increasing of orders does not 
improve the accuracy and increases computational complexity. 
This is compliant to results of identification, given in the tables 2-5. 
Next, the ROC depends not only on order N, but also on the 
location and size of place of measurement. 
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Fig. 6. The Rate of Convergence (38) for all areas and maximum orders  
            M = N = 8 

5. CONCLUSIONS 

The main final conclusion from this paper is that the proposed, 
fully FO model of the distributed parameter system assures better 
accuracy in the sense of the MSE cost function than the model 
using fractional derivative only along the time. In addition, the 
good accuracy can be achieved for relatively low order of model. 

The future work will cover deeper analysis of the convergence 
of the proposed model. Numerical results show, that the conver-
gence depends not only on orders M and N but also on the loca-
tion and size of area of measurement. 

Another important issues are e.g. the positivity analysis as 
well as the use of a new fractional operators with nonsingular 
kernel: Atangana-Baleanu and Caputo-Fabrizio to modelling of the 
presented system. 

Next, the use of thermal camera allows to collect many inter-
esting data from different thermal processes, e.g. it allows to 
investigate thermal processes going in microcontroller system 
during its work. Such a process can be also described using FO 
approach and this is planned to describe using the proposed 
approach. 
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