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Abstract: In this work, a coupled system of time-fractional modified Burgers’ equations is considered. Three different fractional operators:
Caputo, Caputo-Fabrizio and Atangana-Baleanu operators are implemented for the equations. Also, two different scenarios are examined
for each fractional operator: when the initial conditions are u(x,y,0) = sin(xy), v(xy,0) = sin(xy), and when they are
u(x,y,0) = el y(xy,0) = el"5¥} where k, « are some positive constants. With the aid of computable Adomian polynomials,
the solutions are obtained using Laplace Adomian decomposition method (LADM). The method does not need linearization, weak
nonlinearity assumptions or perturbation theory. Simulations are also presented to support theoretical results, and the behaviour

of the solutions under the three different fractional operators compared.
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1. INTRODUCTION

Fractional differential equations (FDEs) are beginning to enjoy
widespread application in many real life modelling problems.
Fractional operators involving power-law kernel were first pro-
posed by Riemann-Liouville and Caputo [1]. Although, these
kernels are singular and constitute serious setbacks to their us-
age, more recent and improved operators such as Caputo-
Fabrizio (CF) [2] and Atangana-Baleanu (AB) [3] operators have
emerged.

The time-fractional Burgers equation is a kind of sub-diffusion
convection equation. It is widely used to describe many physical
problems such as unidirectional propagation of weakly nonlinear
acoustic waves, shock waves in a viscous medium, flow systems,
electromagnetic waves, compressible turbulence and weak shock
propagation, etc [4]. Within the literature, lots of methods have
been used to solve different versions of the Burgers equations,
both integer order and time-fractional forms [5-10].

Agheli used the new homotopic perturbation method (NHPM)
to solve a system of time fractional Burgers’ equations [5]. Kaya
[6] considered an explicit solution of the coupled viscous Burgers
equation with the aid of the decomposition method. Majeed et al.
[7] considered the solution of a one-dimensional time fractional
Burgers and Fishers equations numerically with the help of the
cubic B-spline approximation method. Singh et al. [8] analyzed a
one-dimensional time-fractional model for damped Burgers equa-
tion involving the Caputo-Fabrizio fractional derivative. Also, the
authors [9] considered the approximate analytic solution of the
time-fractional damped Burgers and Cahn-Allen equations involv-
ing the Riemann-Liouville derivative using Homotopy analysis
method (HAM). The existence of solutions for a coupled system of
time-fractional partial differential equations (FPDEs) including
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continuous functions and the Caputo-Fabrizio fractional derivative
was examined by Alsaedi et al. [10].

Also, several other methods have been proposed to solve
non-linear fractional partial differential equations. The authors [11]
numerically solved space-time fractional Burgers equations with
the help of a new semi-analytical method. Safari and Sun [12]
solved a fractional Rayleigh-Stokes using an improved singular
boundary and dual reciprocity methods. Safari and Chen [13]
solved a multi-term time-fractional mixed diffusion-wave equations
with coupling of the improved singular boundary and dual reci-
procity methods. In [14], Safari et al. used a meshless method to
solve a variable-order fractional diffusion problems with fourth-
order derivative term.

Among the available methods, the Laplace-Adomian decom-
position method (LADM) has proven to be one of the most effec-
tive and straight forward method for solving non-linear FDES. This
method combines both the Adomian decomposition method and
Laplace transform. Also, it does not involve any predefined size
declaration, discretization or linearization [15].

In this work, a modified two-dimensional system of time-
fractional Burgers’ equations is considered, with the help of three
different fractional derivatives: Caputo, Caputo-Fabrizio and Atan-
gana-Baleanu. The system is solved by applying LADM and the
obtained results are compared. We hope this work will open up
new research questions for further studies in this regard.

1.1 Preliminaries

Definition 1.1 [16] The Caputo fractional (CF) derivative
of a function f of order 8 € R™ is defined by

SDAf(t) = fyt=O°f'(©dg (1)

1
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Definition 1.2 [16] The Caputo Fractional integral of a function f
of order & € R* is defined by

SIEf(D) —@f t=0°'f(Hd¢ t>0 (2)
If £(t) = 1, the Caputo fractional integral is defined as
S0 (D) = 15 Jp (€= O DO = s (3)

Definition 1.3 [16] For the Caputo derivative, the Laplace trans-
form is defined by:

L{EDZF (O} = s°L{f ()} = s°7'f(0), 0<6<1 (4)
Definition 1.4 [2] Let f € H'(ay,a;), a, > a,,0 € (0,1).The
Caputo-Fabrizio fractional (CF) derivative [2] of a function f of
order 8 € R is defined by

EDIF(D) = 2 [} ex [

(1-6)

Z-o|f@d @

where G(6) = (1-6) + — - ( o denotes a normalization function

satisfying G(0) = G(1) = 1.
However, if f & H'(a4,a,), then the Caputo-Fabrizio de-
rivative is defined by

6G(6
EDEF(E) = TR [ exp |-

¢ -] (&) - F@)ag (6)

Definition 1.5 [2] The Laplace transform of the Caputo-Fabrizio
derivative is given by:

sL{f (£)}-7(0)
L{EGDYF (D} = 6O = oot (7

Definition 1.6 [3] Let f € H'(ay, a;), a, > a,,0 € (0,1).The
Atangana-Baleanu derivative of a function f of order 8 € R* in
Caputo sense is defined by

0 0 ,
2O B -5 -o]F©a @
where, Eg (.) is the Mittag-Leffler function defined by

ABEDYf(6) =

w _ t°
Eg(t) = Zkzom, 6 > 0. (9)

Definition 1.7 [3] The Atangana-Baleanu (AB) fractional integral
in Caputo for a given function f of order 8 € R* is defined by

ABIPF(E) = 5o f(O) + Jy & =D F (g (10)

G(9)I‘(9)

Definition 1.8 [3] For the AB derivative, the Laplace transform is
defined as:

ABC @ sOL{F()}-sP~1f (0)
L{*%50E ()} = 6(0) LD (1)

2. APPLICATIONS

Various forms of the time fractional Burgers equations have
been considered by different authors. For instance, Mohammed
[17] used the Conformable double Sumudu transform in solving a
scalar time-fractional coupled Burgers equation. Also, the authors
[18] solved a nonlinear one-dimensional fractional Burgers’ equa-
tions with the aid of the Elzaki transform and homotopy perturba-
tion method. In [19], the authors developed a modified variational
iteration Laplace transform method and compared with Laplace
Adomian decomposition method in solving a one-dimensional
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time-fractional Burgers Equations.

To the best of our knowledge, no authors have considered the
coupled system of time fractional Burgers’ equation using the
three different fractional derivatives. In this paper, this is now
solved with the aid of the Laplace Adomian Decomposition meth-
od (LADM).

2.1. The Atangana-Baleanu fractional operator

Example 2.1 Let us consider the system of modified time-
fractional two-dimensional Burgers’ equations

a9 u u %u  9%u
—tu—+v—=al—+—
ato + ax + dy ( + )

ax2 = 0y?
3% v v a%v . 9%y
—tu—t+v—=al—+— 12
ato + ox + dy (6x2 6y2)' (12)

Subject to the initial conditions:
Case 2.1 u(x,y,0) = sin(xy), v(x,,0) = sin(xy)

By applying the Laplace transform of the AB derivative to the
equation (12), we obtain

gl = e[ (55
L[] = el (g

which can be re-written as

) ou v u
ox ay

) u ov v v
ox ayl’

_wr) a0 [ 0% 0%y _
Llu(x,y,t)] = s9G6(0) L[ (axz ayz)
6u v ]
ax
v(xyO) s?(1-0)+6 o%v | 0%v\ _
Llv(x,y,t)] = s96(0) L[ (6x2 6y2)
v
ugz-vi] "

Taking inverse Laplace transform of both sides, we obtain

u(x,y, t) = L1 -u(x.sy.O) HS(;G(ge);eL[ (Mz ayz)
ug—z+vg—z]]

) = L7 204 T [ (2 )
| (14

which is equivalent to

01— 2 2
w(e,y, ) = sinCey) + L1 [w L (24 20) -

s96(0) 9x% 9y
o _ ,,a_u]'
ox ay.
v(x,y,t) =sin(xy) + L7! 00040 ) [a (ﬂ + 62_17) -
Yt = y s96(0) ax2 ' 9y?
v v ]
a - Ua] (15)

Using the ADM, we obtain
o . _1 |s?a-6)+6 a
YR ou;(x, y, t) =sin(xy) + L7" [ﬁL [a (axlzl +

) -4 z;f‘;ij]]
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0 2
o o _1|s?@a-6)+6 8%v

2izovi(x,y,t) =sin(xy) + L [T@L [a (ﬁ +
%y ) )
W) =220 G — Xk Dj]] (16)
where, the Adomian polynomial components A;, B;, C; and D; are
given as:

Ju ou ou,
A0=u06 Al_uoa_1+ 1ax0'

du u u
Az_uoaaz+ 1al+gza_x0’ ,

u u U,
Bo—voa0 B1_77061+ 16y0

6u2 auz 6u0
B, =vo—— 2y + v oy +v; 2y’

617 v v
C():an_ C ;anljula;

v v,

Cz—uoaa +u161+626_; ;

Lo ﬂ %
Dy = vy a Dla— a+ V15,

v %

Bz—voa +v162+ Za; (17)
Forj=10,1,2,

_ 6211.0
ur(x,y,8) = sm(xy) + [a(e)( r(e))] [ (ax2
B2) G- v = 55 (1 -

272 0 5x = sin(xy) + @ 1-6+

0

o) [ +y?) sin(xy) = (x + y)sin(xy)cos(xy)]
62

vi(x,y,t) = sm(xy) + [G(g)( r(e))] [ (axv20
a a
W?)_”Of ]‘Sln(xy)+[a(e)(1_9+

0
)] e + yZ) sin(xy) — (x + y)sin(xy)cos(xy)]

_ azuo

Uy (x,y,t) = sin(xy) + [G(g)( r(e))] [ (6x2
F 3 F} a
ﬁﬁ—%%—W%—of"EF““”+

c(le)( :(tei)] [ (a;;l ayZ) B
sin(xy) (ycos (xy) +

5@ (1 -6+ %)] [—2axsin(xy) — ay(x? +
¥?) cos(xy) — y(x + y)[cos?(xy) — sin® (xy)] —
sin(xy) cos(xy)]) (sm(xy) + [6(9)( -0+

%)] [—a(x? + yH)sin(xy) — (x +

y)sin(xy)cos(xy)]) ycos(xy) — sin(xy) (xcos(xy) +
ﬁ(l 0+ %)] [—2aysin(xy) — ax(x? +

y?) cos(xy) — y(x + y)[cos®(xy) — sin®(xy)] —
sin(xy) cos(xy)]) — (sm(xy) + [%(1 -0+

%)] [—a(x? + y?) sin(xy) — (x +

y)sin(xy) cos(xy)]) xcos (xy)]

0t? 8%y
v,(x,y,t) = sin(xy) + [G(g)( r(e))] [ (axZO
8%vg vy _ . 0vo _  Ovi_ 6v0]
ay2> ooy ~H5y V0%, = sin(xy) +
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%uy | d%uy

7 (10 + ) [ (G + 55 -
sin(xy) (ycos(xy) +

%( -0+ @)] [—2axsin(xy) — ay(x? +
¥?) cos(xy) — y(x + y)[cos?(xy) — sin®(xy)] —
sin(xy) cos(xy)]) (sm(xy) + [G(a) (1 -0+
r(a))] [—a(x? + y?)sin(xy) — (x +
y)sm(xy)cos(xy)]) ycos(xy) — sin(xy) (xcos(xy) +
ﬁ(l 0+ @)] [—2aysin(xy) — ax(x? +

y?) cos(xy) — y(x + y)[cos?(xy) — sin?(xy)] —
sin(xy) cos(xy)]) — (sm(xy) + [G(G) (1 -0+
1“(6))] [—a(x? + y?) sin(xy) — (x +

y)sin(xy) cos(xy)]) xcos(xy)]

Case 2.2 u(x,y,0) = sin(xy), v(x,,0) = sin(xy)

u (x,y,t) =

e kY 4 [G(e) (1 -6+ @)] [a(k?y?e™ Y +
k?x%e ) + kye 2kxY 4 kxe=4k*V]
v, (x,y,t) =

ekxy 4 [G(B)( —8 +@)] [a(k?y2e~y +

k?x2e k) + kye2k%Y 4 kxe4k*V]
uz(x y, t) =

—k v 2.,2 ,—k.

”+Mm( “H@ﬂk@ye Y+

242 5—kxy _ 4 —kxy
k“x +[G(6)(1 9+r(9))] [a(k*y*e +
k*x*e %Y 4 4k%e "‘xy)]) — e fxy (kye‘kxy +
1 ot _1,3.,3,—kxy 2..,—kxy _
G(9)(1 9+r(9))] [a(—k3y3e + 2k*xe
k3yx e—kxy) + Zkzyze—kay _ke—4kxy +
4k2xye—4kxy]) _

(e‘k"y + @( -0+ @)] [a(k?y?
kz —kxy)+kye—2kxy+

kxe~ 4kxy])kye‘2kxy( kxe *y + [5(9)( -0+

—kxy +

F(e))] [(Z(Zkzye kexy — k3xy e kxy _ |3x3 —kxy) _

k e —2kxy + 2k2xye 2kxy __ 4k2x2ye 4kxy]) _

-k _ A 2.,2 ,—k
( 7+ [a(e) (1 0+ r(e))] la(k®y®e™ +
k?x2e k) + kye2kxy 4 kxe“”‘xy]) (- kxe‘kx)]
vy (x,y,t) =

e+ [6(9) ( r(e))] [“ (kz

k2x%e™*xy + [6(9) (1 -0+ ﬁ)] [a(k*y*

k*x*e ™ + 4k?e "‘xy)]) — e~kxy (kye"‘xy +

1 ot _1,3.,3,—kxy 2..,—kxy _
0(9)(1 9+F(9))][a( k>y’e + 2k“xe
k3yx2e ™) + 2k?y

—kxy +

—kxy +

Ze—kay _ ke—4kxy +
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kzxye—4kxy]) _

( —kxy 4 [G(B) (1 -0+ ﬁ)] [a(kZy2e "y +
k2 —kxy)+kye—2kxy+

kxe~ ‘”‘xy]) kye~ 2""3’( kxe™**Y + [ (1 -6+

G(0)
%)] [a(Zkzye_kxy _ k3xyze—kxy _ k3x3e—kxy) _
k2e=2k% 4 22 xye=2k¥y kzxzye—4kxy]) _
—kxy vt 2 —kxy
(e + 55 (10 + g | letityre™
k2x2e %) + kye 2KV + kxe~ ‘”"‘y]) (—kxe‘kx)]

2.2. The Caputo fractional operator

Applying the Laplace transform to system (12) and solving via
the Caputo fractional derivative, we have using the initial condi-
tions:

Case 2.3 u(x,y,0) = sin(xy), v(x,y,0) = sin(xy)

uy(x,y,t) = sin(xy) + [F(ein] [a (362;0 N 062:(,) B

ouq dug Jduq ]
U, “Uig, ~ Vo, v1 3y = sin(xy) +

[r(e+1)] [ (aa:zl Zyuzl) — sin(xy) (ycog(xy) +

[r(9+1)] [—2axsin(xy) — ay(x? + y?) cos(xy) —
e+ leos? (ey) —sin’ ()] = sinCey) cos(xy)]) -
(sin(xy) + [ ] [—a(x? + y?)sin(xy) — (x +

)sin(xy)cos(xy)]) ycos(xy) — sin(xy) (xcos(xy) +

r(6+1)

[r(9+1)] [—2aysin(xy) — ax(x* + y?) cos(xy) —

y(x + y)[cos?(xy) — sin®(xy)] — sin(xy) COS(XY)]) -
(sin(xy) + [r(;in] [—a(x? + y?) sin(xy) — (x +

y)sin(xy) cos(xy)]) xcos(xy)] v,(x,y,t) = sin(xy) +

] [ (621;0 621;0) vy vy vy

u —u —Vg— —
[r(9+1) ax2? 0 ax 1 ox 0 5y

Y15, ] = sin(xy) + [r(9+1)] [ (662;21 6;;1) -

sin(xy) (ycos(xy) + [r(9+1)
ay(x? + y?) cos(xy) — y(x +) [COSZ(X)’) — sin®(xy)] —
sin(xy) cos(xy)]) — (sin(xy) + [ ] [—a(x? +

y3)sin(xy) — (x + y)sin(xy)cos(xy)]) ycos(xy) —

] —2axsin(xy) —

r(6+1)

sin(xy) (xcos(xy) + [r(9+1)] [—2aysin(xy) —
ax(x? + y?) cos(xy) — y(x + y)[cosz(xy) —sin?(xy)] —
sin(xy) cos(xy)]) — (sin(xy) + [ ] [—a(x? +

y?) sin(xy) — (x + y)sin(xy) cos(xy)]) xcos(xy)]

Case 24 u(x,y,0) = e ®, p(x,,0) = e™**¥

0

— o—kxy ¢ ][ ( 24,2 ,—kxy
u,(x,y,t) =e +[F(9+1) alky“e +
k2x?e **y + [ i

4.,4 ,—kxy 4..4 ,—kxy
T [a(k*y*e + k*x%e +

r(6+1)
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4k26—kxy)]> _
_ ~ 0 )

e—kxy (kye kxy 4 [m] [a(—k3y3e fexy 4
2k2xe Y — k3yx2e~lv) 4 2k2y o—2kxy _ o o—tkxy 4
4k2xye—4kxy]) ( —kxy _|_[ [a(k2 —kxy +
k?x? —kxy) + kye—kay +
kxe™ 4kxy])kye 2lexy (—kxe"‘"y +

0

2 kxy

[r(9+1)] la(2k*ye™
k2e=2kxy 4 2k 2xye2kxy — 4k2x2ye—4kxy]) _

—kxy 2.,2 ,—kxy 2.2 ,—kxy
( + [r(e+1)] la(k®y®e + kx“e™) +
kye 2kxy 4 kxe“”‘xy]) (—kxe"‘x)]

r6+1)

_ k3xyze—kxy _ k3x36—kxy) _

— ,—kxy 2.,2 ,—kxy
v2(ny,t) = e + [r(9+1)] [a (k ye +
2 —kxy 4 —kxy 4.4 ,—kxy
k?x?e +[r(9+1)][a(kye + k*x*e +
4k2e_"xy)]) -
—kxy —kxy tf
(kye [r(9+1) [
2k%xe ™" — k3yx2e FV) + 2k2
kzxye—4kxy]) ( —kxy_l_[
kZx2e V) + kye 2k 4
kxe~ 4"xy])kye'z"xy (—kxe'kxy +
9 _ _
[r(9+1)] [a(Rk%ye ™ — k3xy?e " — k3x3e
k2e~2K%Y 4 2kZxye 2k — 4k2x2ye—4kxy]) _

a(—k3yde Fv 4
—2kxy _ ke—4kxy +

Jatkayeo +

r6+1)

~kxyy _

—kxy 2.,2 ,—kxy 2.,.2,—kxy
( +[r(9+1)] [a(k*y?e + k“x“e )+

kye=2kxy 4 kxe"”‘"y]) (—kxe"‘x)]
2.3. The Caputo-Fabrizio fractional operator

Applying the Laplace transform to system (12) and solving via
the Caputo-Fabrizio fractional derivative, we have, using the initial
conditions:

Case 2.5 u(x,y,0) = e ®, v(x,,0) = e %Y

uy(x,y,t) = sin(xy) + [1 + 0(t — 1)] [ (%+%) —
ouq oug ouq dug g
oDy “Wg, “Vog, TN ] = sin(xy) +
[1+6(t-1)] [ (66;1 + ‘2;21) — sin(xy) (ycos(xy) +
[1+6(t — D][-2axsin(xy) — ay(x? + y?) cos(xy) —
y(x + y)[cos®(xy) — sin®(xy)] — sin(xy) cos(xy)]) —
(sin(xy) + [1 + 0(t — D][—a(x? + y?H)sin(xy) — (x +
y)sin(xy)cos(xy)])ycos(xy) — sin(xy) (xcos(xy) +
[1+6(t — D][-2aysin(xy) — ax(x? + y?) cos(xy) —
y(x + y)[cos®(xy) — sin®(xy)] — sin(xy) cos(xy)]) —
(sin(xy) + [1 + 6(t — D][—a(x? + y?) sin(xy) — (x +

Y)sin(xy) cos(ey)Dxcos (xy))

9%v,

v,(x,y,t) = sin(xy) + [1 + 6(t — 1)] [a (axz + 22_;0) 3
] = sin(xy) + [1 + 6(t -

vy vy vy 61:0

Uooy TWig, Vo, —
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1)] [a (22;1 + 22:21) — sin(xy) (ycos(xy) + [1 + 0(t —
D][-2axsin(xy) — ay(x? + y?) cos(xy) — y(x +
¥)[cos?(xy) — sin?(xy)] — sin(xy) cos(xy)]) —
(sin(xy) + [1 + 6(t — D][—a(x? + yH)sin(xy) — (x +
y)sin(xy)cos(xy)])ycos(xy) — sin(xy) (xcos(xy) +
[1+6(t - D][-2aysin(xy) — ax(x? + y?) cos(xy) —
y(x + y)[cos?(xy) — sin® (xy)] — sin(xy) cos(xy)]) —
(sin(xy) + [1 4+ 6(t — D][—a(x? + y?) sin(xy) — (x +

y)sin(xy) cos(xy)])xcos (xy))|

Case 2.6 u(x,y,0) = e‘k"y, v(x,,0) = e *¥
u,(x,y,t) = e v + [ ][ (kzyze‘k"y + k%x%e v 4

r(@+1)
[F(9+1)] [a(k*y*e ™Y 4 k*x*e ™Y 4 4k2e —kxy)])
e (kye_kxy + [r(9+1)] la(=k3y3e ™Y + 2k?xe ™ —

k3yx2e "%V 4 2k2y2e kXY — fe~Hkxy 4 4k2xye‘4k"y]) -
—kxy 2.,2 ,—kxy 2,2 ,—kxy —2kxy
( +[r(9+1)] [a(k?y?e + k*x“e )+ kye +

kxe™#57] ) keye 2 (—kxe ™ + 1+ 6(t —
1)[a(2k2ye ™Y — k3xy2e=k*y — [3x3e=kxy) _ |2g-2kxy 4
Zkzxye—zkxy — 4k2x2ye—4kxy]) — (e—kxy + [1 + 9(t _
1)][(1(’62)/26_""3’ + kzxze"‘xy) + kye_2kxy +

kxe ‘4""3’])(—kxe‘k")]

(%, y,t) = e + [1+6(t — D][a(k?y?e™ Y +

k2x%26 + 1+ 0(t — Dla(k*y*e ™V + k*xte ™Y +
4k%e=*)]) —

e "V (kye ™ + [1 + 6(t — D][a(—k3y3e ™" +
2k2xe—kxy _ k3yxze—kxy) + Zkzyze—kay _ ke—4kxy +
4k2xye‘4k"y]) (e™ + 1 +6(t — D][a(k?y?e > +
k2x2e %) + kye 2KV 4 kxe V) kye ~2kxV (— kxe‘k"y +
[1+6(t—D][aRk?ye Y — k3xy2e " — k3x3e~ k) —
kze—zkxy + 2k2xye—2kxy _ 4k2x2ye—4kxy]) _ (e—kxy +
[1+6(t—D][a(k?y?e ™V + k2x2e ") + kye 2k +
kxe*xY])(—kxe™*¥)]

2.4. Numerical simulations

In this section, we present some numerical results to justify
the theoretical analysis and computations. It is imperative to state
that the MATLAB R2020a version was used to run all the simula-
tions in this section. The solution profiles for u at initial time t = 0
when the fluid viscosity is 1.0, using the three different fractional
operators are presented in Figs.1(a)-(b).
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y X
Fig. 7(c). Case 2: Solution profile for u Fig. 8(d). Case 1: Solution profile for u
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Fig. 10(a). Case 1: Solution profile for u
when @ = 1.0, 6 = 0.95,t = 20

Fig. 10(b). Case 1: Solution profile for u
whena = 2.0, 6 = 0.95,t = 20

Fig. 10(c). Case 1: Solution profile for u
whena = 3.0, 6 = 0.95,t = 20

Fig. 10(d). Case 1: Solution profile for u
whena = 4.0, 8 = 0.95,t = 20

Fig. 11(a). Case 2: Solution profile for u
whena = 1.0, 8 = 0.95,t = 20
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Fig. 11(b). Case 2: Solution profile for u
whena = 2.0, 6 = 0.95,t = 20

Fig. 11(c). Case 2: Solution profile for u
whena = 3.0, 6 = 0.95,t = 20

Fig. 11(d). Case 2: Solution profile for u
whena = 4.0, 6 = 0.95,t = 20

The solution profiles for u over time when x =y =1 and
when the fluid viscosity is 1.0, using the three different fractional
operators are presented in Figs.2(a)-(b).The solution profiles for u
at initial time t = 0 when the fluid viscosity is 1.0, using the
Caputo fractional operator are presented in Figs.3(a)-(b). The
solution profiles for u at initial time t = 0 when the fluid viscosity
is 1.0, using the Caputo-Fabrizio fractional operator are present-
ed in Figs.4(a)-(b).The solution profiles for u at initial time t = 0
when the fluid viscosity is 1.0, using the Atangana-Baleanu frac-
tional operator are presented in Figs.5(a)-(b).The solution profiles
for u at initial conditions u(x,y,0) = sin(xy),v(x,y,0) =
sin(xy), over time, when the fluid viscosity a is varied from 1.0
to 4.0, and the fractional order 6 = 0.95, using the Atangana-
Baleanu fractional operator are presented in Figs. 6(a)-(d). It is
observed that as the viscosity is increased, the fluid velocity is
stabilized.The solution profiles for u at initial conditions
u(xy,0) = e, v(x,y,0) = e ¥ over time, when the
fluid viscosity a is varied from 1.0 to 4.0, and the fractional order
0 = 0.95, using the Atangana-Baleanu fractional operator are
presented in Fig.ure 7(a)-(d).The solution profiles for u at initial
conditions u(x,y,0) = sin(xy), v(x,y,0) = sin(xy), over
time, when the fluid viscosity a is varied from 1.0 to 4.0, and the
fractional order 8 = 0.95, using the Caputo fractional operator
are presented in Figs. 8(a)-(d).The solution profiles foru at initial
conditions u(x,y,0) = e ¥, v(x,y,0) = e ¥, over time,
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when the fluid viscosity o is varied from 1.0 to 4.0, and the frac-
tional order 8 = 0.95, using the Caputo fractional operator are
presented in Figs. 9(a)-(d).The solution profiles for u at initial
conditions u(x,y,0) = sin(xy), v(x,y,0) = sin(xy), over
time, when the fluid viscosity a is varied from 1.0 to 4.0, and the
fractional order 8 = 0.95, using the Caputo-Fabrizio fractional
operator are presented in Fig.ure 10(a)-(d).The solution profiles
for u at initial conditions u(x,y,0) = ™, v(x,y,0) =
e over time, when the fluid viscosity o is varied from 1.0 to
4.0, and the fractional order 8 = 0.95, using the Caputo-Fabrizio
fractional operator are presented in Figs. 11(a)-(d). It is observed
from the figures that as the viscosity is increased, the fluid velocity
is stabilized.

It is also worth stating that the CPU time using the Caputo
fractional operator was 0.863006 seconds. Using the Caputo-
Fabrizio operator, the CPU time was 0.954948 seconds while
with the AB fractional operator the CPU time was 0.860035
seconds.

3. CONCLUSION

In this work, a coupled system of time-fractional modified
Burgers’ equations with appropriate initial values is solved using
the Laplace Adomian decomposition method. Three different
fractional operators: Caputo, Caputo-Fabrizio and Atangana-
Baleanu operators are considered for the equations. Also, two
different scenarios are examined for each fractional operator:
when the initial conditons are u(x,y,0) = sin(xy),
v(x,y,0) = sin(xy), and when they are u(x,y,0) = e %,
v(xy,0) = e where k,a are some positive constants.
With the aid of computable Adomian polynomials, the solutions
are obtained. The method does not need linearization, weak
nonlinearity assumptions or perturbation theory. Simulations are
also presented to support theoretical results, and the behaviour of
the solutions under the three different fractional operators com-
pared.

Future work shall consider other numerical schemes such as
singular boundary and dual reciprocity methods on the current
coupled system. We shall also consider modified Burgers equa-
tions with higher order dissipation term.
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