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Abstract: The paper concerns modelling the dynamics of the contact system of the tested sample with an elastic half-space (anvil) during 
their collision. The original elements in the paper include the proposed general approach to solving the problem of contact dynamics.  
The presented approach consists in determining the force of impact on the sample during the collision and the joint solution of the problem 
for the tested sample and the problem for an elastic semi-space under the conditions of the assumptions of Hertz's theory. The resulting  
interaction forces allow the determination of displacements and stresses. 
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1. INTRODUCTION 

The purpose of the paper is to analyse the wave phenomena 
occurring during the impact of the test sample against the anvil 
(elastic half-space) and to develop a method for calculating the 
parameters of selected physical quantities occurring in the anvil 
and the sample (projectile [1]) in the initial period after the impact. 

Experimental database used as input (comparative) data were 
the impact tests of the Taylor bar. The impact test was proposed 
by Taylor [1], Whiffin [2] and Carrington and Gayler [3] as an 
experimental method of measuring the dynamic yield strength Ryd 
of elastic-plastic materials [1–3]. 

Many examples of shock-type transient processes with high 
strain rates can be found in the field of artillery [4–7] and in the 
study of seismology, earthquake engineering, dynamic soil-
substrate interaction and terrain characteristics, and in mathemat-
ical modelling of the erosion process.  

The problem of collision of elastic bodies with regard to their 
deformation has a rich history. The elementary collision theory 
uses the restitution factor Rf as a key parameter characterizing 
the deformation properties of colliding bodies and does not reflect 
various features of the internal state of the bodies [8, 9]. 

Saint-Venant [10], considering the propagation of longitudinal 
waves, considered the axial impact of the rods. It turned out that 
the theoretically determined time of collision differs significantly 
from the time obtained during the experiment. The reason for 
these differences is the inability to ensure the perfect flatness of 
the rod ends. 

Hertz [11], based on Boussinesq's [12] research on the de-
formation of an elastic half-space, solved the problem of direct 
central collision of spheres with elastic properties, considering 
only local static deformations (ignoring wave propagation). In this 
case, the agreement between the theoretical and experimental 

collision times turned out to be good. Hertz's theory of impacts is 
used in practice to determine the stresses during interactions of 
two bodies with each other [13]. 

Sears [14] combined the Saint-Venant and Hertz approaches 
and considered the influence of the spherical shape of the rod 
ends on the obtained results. In these studies, he took into ac-
count both local deformations and wave propagation. This ap-
proach led to a good agreement of theoretical and experimental 
results and is used in many subsequent works [15, 16]. 

Kil’chevskii [8] modified Hertz's theory by combining it with 
Saint-Venant's theory. 

The theory of crossbeam impact comes from Timoshenko et 
al. [17]. 

The problem concerning the phenomena occurring in an elas-
tic semi-space hit by a moving mass on the surface has been 
investigated, e.g., in articles [18–24]. 

Kubenko [19] presented an overview of the approaches to 
study the impact of a blunted elastic body on the surface of an 
elastic medium. Mathematically, the problem is generally formu-
lated as the non-stationary mixed boundary problem of continuum 
mechanics in which the unknown contact boundary changes with 
time and space. 

The collision process between a blunted body and an elastic 
medium always includes a supersonic stage, during which the 
boundary value problem can be formulated as non-mixed and 
thus solved with simpler methods [19, 20]. 

In the paper [21], the problem of the linear theory of elasticity 
concerning the response of the elastic surface of the half-space to 
the normal impact of the indenter was considered. 

In the paper [22], an exact analytical solution of the problem 
was obtained for the impact of a rigid mass on a semi-infinite 
elastic rod by a Kelvin-Voigt linear element. 

The impact of the super seismic phase on the collision pro-
cess immediately after the first contact is investigated within the 
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framework of Hertz's theory of impacts in the paper [20]. For small 
values of the αA parameter (defined in point 4), the influence of 
the super seismic state on the course of the impact can be ne-
glected. 

Ruta and Szydło [25] presented a method enabling the con-
version of the results of the dynamic weight test into a static mod-
el. This paper presents an analytical solution to the problem of 
half-space vibrations caused by the shock pulse. 

In the paper [26], the ground was modelled as an idealised 
elastodynamic half-space, and its sound emission during the 
collision of the object with the ground was analysed. 

Since the classic work of Lamb [27] on the transient elastic re-
sponse of a half-space resulting from the sudden application of a 
normal surface line and point loads, significant progress has been 
made in solving this class of elastodynamic problems [28]. 

Beginning with the ground-breaking work [27], Lamb's prob-
lem, which relates to the dynamic response on the free surface of 
an elastic half-space resulting from a time-dependent point pulse 
on a free surface, has become a classic subject of numerous 
theoretical seismology studies. Cagniard [29] presented a compli-
cated method using the Laplace transform over time and present-
ed the final solutions in the time domain. Thanks to the modifica-
tion made by de Hoop [30], it became an appropriate way to solve 
the Lamb problem, which is now referred to as the ‘Cagniard-de 
Hoop method’. The problem was taken up again by Sánchez-
Sesma et al. [31] who provided a full set of formulas with an exact 
solution for any source and recipient location. Pak and Bai [32] 
presented an improved but compact analytical formula of the 
elastodynamic response in the time domain of a three-
dimensional half-space subjected to an arbitrary distribution of 
internal or surface forces. For a surface point pulse operating on a 
3D medium, Pekeris [33] gave a closed solution for a vertical point 
source, and Mooney [28] extended the results for vertical loads by 
any Poisson's ratio, ignoring the radial component. 

Kausel [34, 35] dealt with the problem of Lamb applied to the 
soil, horizontal and vertical point load applied to the surface of an 
elastic, homogeneous half-space with any Poisson's ratio. A 
compact set of unambiguous space time formulas was presented 
for the following problems: all response functions for receivers 
placed on the surface of the half-space and at the depth under the 
load, i.e., along the epicentral axis. 

Emami and Eskandari-Ghadi [36] presented a history of this 
problem, from its earlier stages to more recent research, by outlin-
ing and discussing the various rigorous approaches and methods 
of solving that have been suggested so far. 

We shall consider the collision of elastic bodies (Figs. 1 and 
2). The study will be conducted with the basic geometric assump-
tions of Hertz's theory [11].  

 
Fig. 1. View of the sample on the flight path before hitting the anvil:  

(1) anvil and (2) research sample 

We limit ourselves to considering the direct interaction of the 
central bodies, i.e., we assume that they are the resultant of the 

dynamic contact pressures applied to the colliding bodies, di-
rected along a straight line connecting their centres of inertia and 
coinciding with the normal to the compression surface at the point 
of initial contact of the non-deformed surface of these bodies. 

 
Fig. 2. The sample at the moment it hits the anvil 

This simplifying assumption will allow us to take into account 
only one component of the displacements of bodies at the point 
coinciding with the point of their initial contact. 

2. IMPACT PROBLEM STATEMENT 

Let us assume that a heavy body hits the half-space and has 
V0 velocity when it contacts the surface of the half-space. Under 
the influence of an impact in a half-space and in a striking sample 
of r0 radius, local deformations will be created, and, additionally, 
vibrations of the half-space will arise. Let us assume that the 
friction between the contacting surfaces is negligible, and the 
material of the elastic space with Young's modulus E and Pois-
son's ratio ν does not undergo plastic deformation or fracture. 

The assumption about the elastic behaviour of metal anvil 
(target) can be extended to the case of real processes, when only 
local plastic deformations occur in the material, limited by the 
proximity of the starting point of contact; moreover, the energy 
needed to create a residual indentation is only a small fraction of 
the initial kinetic energy [18]. 

By continuing the contact of the impact sample with the half-
space, the displacements of the sample will consist of a part 
dependent on local compression and a part determined by dy-
namic deflections of the half-space. As is known, the dynamic 
deflections of the half-space satisfy the differential Eq. (1). 

2.1. Mathematical model of the anvil  

The point source causes the appearance of volumetric longi-
tudinal (P) and shear (S) waves and Rayleigh (R) waves. Lamb 
[27] considered two external problems of wave propagation in an 
isotropic elastic half-space from a normally applied concentrated 
force to a free force. The solution of these problems in the paper 
[37] has been reduced to wave equations due to the scalar and 
vector potential. 

We consider the anvil as an elastic half-space that is rigidly 
fixed in a housing that is struck by the test sample. We can con-
sider the anvil as half-space until reflected waves do not appear. 

Let us consider in a cylindrical coordinate system (𝑟, 𝜃, 𝑧) a 

half-space (0 ≤ 𝑧 < ∞), where r is radius, θ is angle and z is 
coordinate, as shown in Fig. 3. The medium is assumed to be 
homogeneous and isotropic. Axially symmetric non-stationary 
loads depending on position and time act on the surface p(r, t) 
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with relative spatial distribution Z(r) and the resultant P(t), i.e.,  
p(r, t) = Z(r)P(t) in time t > 0. As a result of this action, there is a 
vector field of displacement in the structure 𝑈 ≡ (𝑢, 𝑣, 𝑤), where 
u, v and w are the components of the displacement vector on the 
axis, r, θ and z. Due to the axisymmetric stress distribution, dis-

placements, strains and stresses will be independent of the  
angle. We have 𝑈 ≡ (𝑢, 0, 𝑤).  

 
Fig. 3. Physical model of an anvil (elastic half-space)  
            with a surface area load with r0 radius 

An elastic half-space is characterised by the velocities of lon-

gitudinal (P) c1 and shear (S) c2 waves or the Lame constants λ,  

and density , which are related by dependencies 

𝑐1 = √
𝜆+2


, 𝑐2 = √




 

On the free surface of the medium, stresses 𝜎𝑧𝑟 , 𝜎𝑧𝜃 and 𝜎𝑧𝑧 
are either converted to zero or take values corresponding to a 
given limit load.  

We assume that the medium is at rest when t < 0, and in the 
initial moment, t = 0, where the axisymmetric source of disturb-
ances starts to work 𝑝(𝑟, 𝑡) = 𝑍(𝑟)𝑃(𝑡). 

As a rule, the forces arising during an impact P(t) (impact 
force, life force) are not known in advance; they must be deter-
mined in the problem-solving process, and only in some cases 
can they be considered predetermined. 

The discussed issue boils down to solving Lamé displacement 
equations in a cylindrical coordinate system [38]:  

(𝜆 + 2) (
∂2𝑢

∂𝑟2 +
1

𝑟

∂𝑢

∂𝑟
−

𝑢

𝑟2) + 
∂2𝑢

∂𝑧2 + (𝜆 + )
∂2𝑤

∂𝑟 ∂𝑧
= 𝜌

∂2𝑢

∂𝑡2 , 

(𝜆 + ) (
∂2𝑢

∂𝑟 ∂𝑧
+

1

𝑟

∂𝑢

∂𝑟
) +  (

∂2𝑤

∂𝑟2 +
1

𝑟

∂𝑤

∂𝑟
) + (𝜆 + 2)

∂2𝑤

∂𝑧2 = 𝜌
∂2𝑤

∂𝑡2 , 

0 ≤ 𝑧 < ∞, 0 ≤ 𝑟 < ∞  (1) 

at boundary conditions: 

𝜎𝑧𝑧(𝑟, 0, 𝑡) = −𝑝(𝑟, 𝑡) = −𝑃(𝑡)𝑍(𝑟), 𝑧 = 0   (2) 

𝜎𝑟𝑧(𝑟, 0, 𝑡) = 0, 𝑧 = 0   (3) 

𝑢, 𝑤 → 0, 𝑧 → ∞   (4) 

and the initial conditions [37]: 

𝑢 = 0,
𝜕𝑢

𝜕𝑡
= 0,   𝑤 = 0,

𝜕𝑤

𝜕𝑡
= 0, 𝑡 < 0   (5) 

p(t, r) is the contact pressure density distributed over the contact 
area ω(t). Due to the axis of symmetry, ω(t) is a circle with a 
radius a(t). We assume that the contact area does not change 
with time, and from the beginning, the a(t) radius is equal to r0. 

We will consider the sources 𝑍(𝑟) on the surface for which the 
following condition is met: 

2𝜋 ∫ 𝑝(𝑟, 𝑡)𝑟𝑑𝑟
∞

0
= 𝑃(𝑡)  (6) 

where [13] 

𝑍(𝑟) =
1

𝜋𝑟0
2

3

2
√(1 −

𝑟2

𝑟0
2) 𝐻 (1 −

𝑟2

𝑟0
2). (7) 

where H(t) Heaviside function: H(t) = 0 for t < 0, H(t) = 1 for t  0. 

2.2. Mathematical model of a sample hitting an anvil 

In the study to determine the impact of half-space, the system 
of equations describing the behaviour of waves in the half-space 
integrates simultaneously with the equation of motion of the sam-
ple and the condition of compliance of displacements. The last 
one takes into account a contact approximation of a sample with 
mass m1 and half space. One of the ends of the cylindrical rod is 
hemispherical. We will consider that for the considered impact of 
the test sample; the contact approximation can be determined on 
the basis of the solution to the dynamic problem of Hertz for 
pressing a ball into an elastic half-space [13]. 

Let us denote, after Timoshenko [17], the total displacement 
of the hitting body (projectile [1]) from the start of the impact as 
h(t) and local compression as αH. Then, of course [17, 39] 

ℎ = 𝛼𝐻 + 𝑤   (8) 

where w = w(0, 0, t) is deflection of the elastic semi-space surface 
under the sample. The displacement h(t) satisfies the differential 
equation of motion 

𝑚1
𝑑2ℎ(𝑡)

𝑑𝑡2 = −𝑃(𝑡)  (9) 

under initial conditions: 

ℎ(0) = 0, 
𝑑ℎ

𝑑𝑡
= 𝑉0, 𝑡 = 0   (10) 

Here, P(t) is the resultant of the contact pressure. 
In the following part, we assume that 

𝑚1

𝑃

𝜕2𝑤𝑒

𝜕𝑡2
≪ 1   (11) 

where 𝑤𝑒(𝑟, 𝑧, 𝑡) characterises the relative displacement of the 
sample elements due to its deformation.  

3. SOLUTION METHOD 

3.1. Key relationships for an elastic half-space  

Having a solution for a concentrated force acting on a half-
space boundary, the superposition method allows us to find dis-
placements and stresses arising under the action of a load distrib-
uted in a circle [25]. This article uses a different approach [40] to 
find the stress-strain state of a half-space. Applying the Laplace 
and Hankel transformations to Eq. (1) and considering the homo-
geneous initial condition (5), we receive linear differential equa-
tions with respect to the variable z. Since the solution of these 
equations depends on four unknowns, they are found using four 
boundary conditions (2)–(4). By applying the inverse Laplace and 
Hankel transformations, we obtain the searched dependencies. 
Displacements u, w and stresses can be expressed by the Duha-
mel integral 
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{𝑢(𝑟, 𝑧, 𝑡), 𝑤(𝑟, 𝑧, 𝑡)} = ∫ {𝑢𝛿
𝑡

0
(𝑟, 𝑧, 𝑡 − 𝑡′), 𝑤𝛿(𝑟, 𝑧, 𝑡 − 𝑡′)} ∙  

𝑃(𝑡′)𝑑𝑡′ = {𝑢𝛿(𝑟, 𝑧, 𝑡), 𝑤𝛿(𝑟, 𝑧, 𝑡)} ∗ 𝑃(𝑡)   (12) 

{𝜎𝑧𝑧 , 𝜎𝑟𝑟 , 𝜎𝜃𝜃 , 𝜎𝑟𝑧} = {𝜎𝑧𝑧,𝛿 , 𝜎𝑟𝑟,𝛿 , 𝜎𝜃𝜃,𝛿 , 𝜎𝑟𝑧,𝛿} ∗ 𝑃(𝑡)   (13) 

where 𝑢𝛿(𝑟, 𝑧, 𝑡) and 𝑤𝛿(𝑟, 𝑧, 𝑡) are solutions to problems (1)–(6) 

for the impulse function P(t) = δ(t): δ(t) = ∞ for t = 0, δ(t) = 0 for 

t ≠ 0 and 

∫ 𝛿(𝑡)𝑑𝑡
+∞

−∞
= 1,   (14) 

Eqs (12) and (13) give a convolution of two causal functions. 
Applying the Laplace and Hankel integral transformations to the 
considered problems (1)–(6) [37], e.g., for displacement 
𝑤𝛿(𝑟, 𝑧, 𝑡), the equations can be written as follows: 

𝑤𝛿
𝐿(𝑟, 𝑧, 𝑠) = ∫ 𝑤𝛿(𝑟, 𝑧, 𝑡)𝑒−𝑠𝑡𝑑𝑡

∞

0
    (15) 

𝑤𝛿
𝐿𝐻(𝑘, 𝑧, 𝑠) = ∫ 𝑤𝛿

𝐿(𝑟, 𝑧, 𝑠)𝑟𝐽0(𝑘𝑟)𝑑𝑟
∞

0
    (16) 

we get a solution to the problem of the following form [40]: 

{𝑢𝛿 , 𝑤𝛿} =
1

2𝜋𝑖
∫ {𝑢𝛿

𝐿 , 𝑤𝛿
𝐿}𝑒𝑠𝑡𝑑𝑠

𝑐0+𝑖∞

𝑐0−𝑖∞
    (17) 

{𝜎𝑧𝑧,𝛿 , 𝜎𝑟𝑟,𝛿 , 𝜎𝑟𝑧,𝛿} =
1

2𝜋𝑖
∫ {𝜎𝑧𝑧,𝛿

𝐿 , 𝜎𝑟𝑟,𝛿
𝐿 , 𝜎𝑟𝑧,𝛿

𝐿 }𝑒𝑠𝑡𝑑𝑠
𝑐0+𝑖∞

𝑐0−𝑖∞
   (18) 

where 

{𝑤𝛿
𝐿 , 𝜎𝑧𝑧,𝛿

𝐿 } = ∫ {𝑤𝛿
𝐿𝐻 , 𝜎𝑧𝑧,𝛿

𝐿𝐻 }𝑍𝐻(𝑘)𝑘𝐽0(𝑘𝑟)𝑑𝑘
∞

0
   (19) 

{𝑢𝛿
𝐿 , 𝜎𝑟𝑧,𝛿

𝐿 } = ∫ {𝑢𝛿
𝐿𝐻, 𝜎𝑟𝑧,𝛿

𝐿𝐻 }𝑍𝐻(𝑘)𝑘𝐽1(𝑘𝑟)𝑑𝑘
∞

0
    (20) 

𝜎𝑟𝑟,𝛿
𝐿 = ∫ 𝜎𝑟𝑟,𝛿

𝐿𝐻0𝑍𝐻𝑘𝐽0(𝑘𝑟)𝑑𝑘
∞

0
+

1

𝑟
∫ 𝜎𝑟𝑟,𝛿

𝐿𝐻1𝑍𝐻𝑘𝐽1(𝑘𝑟)𝑑𝑘
∞

0
    (21) 

𝐽𝑛(𝑘𝑟) is a Bessel function of the first kind of order n (n = 0, 1, …); c0 is 
a real number so that the contour path of integration is in the 
region of convergence of uδLH(k,z,s), wδLH(k,z,s). 

Integral expressions in Eqs (19)–(21) marked with ‘LH’ have 
the following form [40]: 

𝑢𝛿
𝐿𝐻(𝑘, 𝑧, 𝑠) =

(𝛾𝑒−𝛼𝑧−2𝛼𝛽𝑒−𝛽𝑧)𝑘

𝜇𝐷(𝑘,𝑠)
    (22) 

𝑤𝛿
𝐿𝐻(𝑘, 𝑧, 𝑠) =

(𝛾𝑒−𝛼𝑧−2𝑘2𝑒−𝛽𝑧)𝛼

𝜇𝐷(𝑘,𝑠)
    (23) 

𝜎𝑧𝑧,𝛿
𝐿𝐻 (𝑘, 𝑧, 𝑠) = −

(𝛾2𝑒−𝛼𝑧−2𝛼𝛽𝑘2𝑒−𝛽𝑧)

𝐷(𝑘,𝑠)
    (24) 

𝜎𝑟𝑧,𝛿
𝐿𝐻 (𝑘, 𝑧, 𝑠) =

(−𝑒−𝛼𝑧+𝑒−𝛽𝑧)2𝛼𝛾𝑘

𝐷(𝑘,𝑠)
    (25) 

𝜎𝑟𝑟,𝛿
𝐿𝐻0(𝑘, 𝑧, 𝑠) =

𝛾(2𝑘2−(𝜆/𝜇)𝑐1
−2𝑠2)𝑒−𝛼𝑧−4𝛼𝛽𝑘2𝑒−𝛽𝑧)

𝐷(𝑘,𝑠)
    (26) 

𝜎𝑟𝑟,𝛿
𝐿𝐻1(𝑘, 𝑧, 𝑠) =

(−2𝛾𝑒−𝛼𝑧+4𝛼𝛽𝑒−𝛽𝑧)𝑘

𝐷(𝑘,𝑠)
    (27) 

𝐷(𝑘, 𝑠) = 𝛾2 − 4𝛼𝛽𝑘2, 𝛾 = 2𝑘2 + 𝑐2
−2𝑠2   (28) 

𝛼 = √𝑘2 + 𝑐1
−2𝑠2, 𝛽 = √𝑘2 + 𝑐2

−2𝑠2, Re𝛼 > 0, Re𝛽 > 0   (29) 

Hankel transform ZH(k) of the Z(r) source on the surface Eq. (7): 

𝑍𝐻(𝑘) =
3(sin (𝑟0𝑘)−𝑟0𝑘cos (𝑟0𝑘))

2𝜋𝑟0
3𝑘3     (30) 

In order to receive the function 𝑤𝛿(0,0, 𝑡) for the initial mo-
ment 𝑡 → 0, we find the properties of the Laplace transform for 
𝑠 → ∞  

𝑤𝛿
𝐿𝐻(𝑘, 𝑧, 𝑠) =

𝑐2
2𝑒

−
𝑧𝑠
𝑐1

𝜇𝑐1
(

1

𝑠
−

𝑐1𝑧𝑘2

2𝑠2 + ⋯ ) −
2𝑐2

4𝑘2𝑒
−

𝑧𝑠
𝑐2

𝜇𝑐1𝑠3 , 𝑠 → ∞   (31) 

 

In the initial moment,  

𝑤𝛿(0,0, 𝑡) =
𝑐2

2

𝜇𝑐1
𝐻(𝑡)𝑍(0), 𝑡 → 0   (32) 

𝜎𝑧𝑧,𝛿(0, 𝑧, 𝑡) = −𝛿(𝑡 − 𝑧/𝑐1)𝑍(0), 𝑡 − 𝑧/𝑐1 → 0   (33) 

Asymptotics Eq. (33) shows that for the calculation of stresses, it 
is better to use the following equation: 

𝜎𝑧𝑧(𝑟, 𝑧, 𝑡) = ∫ 𝜎𝑧𝑧,𝐻(𝑟, 𝑧, 𝑡 − 𝑡′)
𝑑

𝑑𝑡′
𝑃(𝑡′)𝑑𝑡′

𝑡

0
    (34) 

where 𝜎𝑧𝑧,𝐻(𝑘, 𝑧, 𝑠) = 𝜎𝑧𝑧,𝛿(𝑘, 𝑧, 𝑠)/𝑠. 

𝑐2/𝑐1 = √(1 − 2𝜈)/(2 − 2𝜈)  

The calculations of the inverse integral Laplace and Hankel 
transformations were performed in the same way as in the paper 
[40]. 

3.2. Solution method for the research sample 

Integrating the Eq. (9) using the Laplace transform and the ini-
tial condition (10), we obtain the following equation: 

ℎ(𝑡) = 𝑉0𝑡 −
1

𝑚1
∫ (𝑡 − 𝑡′)𝑃(𝑡′)𝑑𝑡′

𝑡

0
    (35) 

On the other hand, according to the theory of Hertz [13], we 
can assume the following equation: 

𝛼𝐻 = (𝑃/𝐾)2/3 = 𝑘0𝑃2/3 or 𝑃 = 𝐾𝛼𝐻
3/2

   (36) 

where K is determined from the equation [13] 

𝐾 =
4𝐸∗√𝑟0

3
, 𝑘0 = 𝐾−2/3, 

1

𝐸∗ =
1−𝜈1

2

𝐸1

+
1−𝜈2

𝐸
   (37) 

Considering Eqs (8), (35) and (36), we obtain the equation: 

𝑉0𝑡 −
1

𝑚1
∫ (𝑡 − 𝑡′)𝑃(𝑡′)𝑑𝑡′

𝑡

0
= 𝑘0𝑃(𝑡)2/3 + 𝑤(0,0, 𝑡)   (38) 

At the moment of time, t = tn = nt, where n = 0, 1, 2, …, 
where 𝛥𝑡 integration time is assumed to take place 

𝑉0𝑡𝑛 −
1

𝑚1
∫ (𝑡𝑛 − 𝑡′)𝑃(𝑡′)𝑑𝑡′

𝑡𝑛

0
= 𝑘0𝑃(𝑡𝑛)2/3 + 𝑤𝑛    (39) 

where wn = w(0,0,tn1). 
In the initial moment t = 0 (n = 0), sample displacement h = 0, 

displacement of half-space w = 0 and sample speed v = V0. 
In moment t = t1 (n = 1), sample displacement is 

h(t1)=h1=V0 t1, deflection of half-space is w(0,0,t0) = w1 = 0, impact 
force (pressure) is P(t1) = P1 =K (h1)3/2, acceleration of the sample 
is a1 = – P1/m1 and sample speed is v(t1) = v1 =V0. 

In moment t = t2 (n = 2), sample displacement is 

h(t2) = h2 = h1 + v1 t + a1(t)2/2, deflection of half-space is 
w(0,0,t1) = w2, impact force (pressure) is P(t2) = P2 = K (h2–w2)3/2, 
acceleration of the sample is a2 = – P2/m1 and sample speed is 

v(t2) = v2 = v1 + a1t. 
The further course of the calculations is obvious. Let us write 

directly the formulas related to the nth stage: 

ℎ(𝑡𝑛) = ℎ𝑛 = ℎ𝑛−1 + 𝑣𝑛−1∆𝑡 + 𝑎𝑛−1(∆𝑡)2/2    (40) 

𝑤𝑛 = ∆𝑡 ∑ 𝑤𝛿(0,0, 𝑡𝑛−1−𝑡𝑚)𝑛−2
𝑚=1 𝑃𝑚 +

∆𝑡

2
𝑤𝛿(0,0,0)𝑃𝑛−1   (41) 

𝑃(𝑡𝑛) = 𝑃𝑛 = 𝐾(ℎ𝑛– 𝑤𝑛)3/2    (42) 

𝑎𝑛 = −𝑃𝑛/𝑚1    (43) 

𝑣(𝑡𝑛) = 𝑣𝑛 = 𝑣𝑛−1 + 𝑎𝑛−1∆𝑡    (44) 
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4. NUMERICAL RESULTS 

A numerical analysis of the collision of a copper test sample 
with a steel anvil was carried out. The parameters are given in 
Tab. 1. The mass of the tested sample is m1 = 0.0122 kg, sample 
radius is r0 = 0.004 m and collision speed is V0 = 100 m/s. 

 
Tab. 1. Mechanical properties of steel and copper 

Properties Copper Steel 

Longitudinal wave speed c1 [m/s] 4,597 5,994 

Shear wave speed c2
 [m/s] 2,263 3,204 

Density  [kg/m3] 8,960 7,830 

Coefficient λ [GPa] 97.53 120.6 

Shear modulus of elasticity G,  [GPa] 45.9 80.4 

Poisson number  [] 0.34 0.3 

Young's module E [GPa] 123 209 

Yield point Ry [MPa] 57 1,000 

Tensile strength Rm [MPa] 227 1,200 

For the problem under consideration [21], the 𝛼𝐴 =

(𝜋𝜌𝑟0
3/𝑚1)1/2(𝑉0/𝑐1)3/2 = 0.785 ∙ 10−3 parameter was calculated. 

Due to the low value of αA, the influence of the super-seismic state 
on the course of the impact can be neglected as a whole.  

Figs. 4 and 5 show the time courses of the characteristics of 
the test specimen during the collision. You can see that initially the 
force of influence on the sample P(t), sample displacement h(t) 
and deflection of half-space w(t) during the collision increase and 
reach their maximum values. The sample speed v(t) initially drops 
to zero at time t’s. The diagram of the relationship P(t) is shown in 
Fig. 4. Since the Hertz model describes elastic deformations, the 
P(t) diagram is symmetrical about the vertical axis passing 
through the point (t’s, Pmax) (ts = 2 t’s), where ts is the collision time. 
When the force of the effect on the sample P(ts) = 0, then  
h – w = 0 as in Eq. (8) (Fig. 4). 

 
Fig. 4. Change of the force of influence on the sample P, sample  

displacement h, deflection of the half-space w and sample  
speed v over time during the Hertz impact for the collision  
speed V0=100 m/s 

 
The coefficient of restitution was marked with the letter Rf. 

This coefficient is the ratio of the body speed after the impact v(ts) 
to the speed right before the impact V0. In the considered ranges 
of speeds and dimensions of colliding bodies, 

Rf = v(ts)/V0 = 0.991 (ts = 27.0 μs, v(ts) = 99.1 m/s). This factor 
hardly depends on these values. 

Without considering the deflection of the elastic half-space, 
the problems (9) and (10) can be solved in the analytical form 
[11]. Maximum deflection can be written as follows: 

𝛼𝑚𝑎𝑥 = (
5

4

𝑚1𝑉0
2

𝐾
)

2/5

,    (45) 

Maximum force of impact on the sample: 

𝑃𝑚𝑎𝑥 = 𝐾𝛼𝑚𝑎𝑥
3/2

    (46) 

Collision duration ts: 

𝑡𝑠 = 2.94
𝛼𝑚𝑎𝑥

𝑉0
    (47) 

This formula shows that the duration of the impact depends to 
the greatest extent on the mass of the sample m1 and increases 
with it. The duration of the collision ts is to a lesser extent influ-
enced by the impact speed and the reduced radius of curvature of 
the body contact surfaces, which is within the n factor to the 1/2 
rational power. As these parameters increase, the impact time is 
reduced. Calculation according to Eqs (46) and (47) gives 

Pmax = 182,191 N and ts = 24.6 s. Calculation of the dimension-
less coefficient Kmax = Pmax /S/Rm = 15.97 shows that the average 
maximum stresses arising in the contact area are significantly 
higher than the tensile strength of the sample calculated under 

static conditions, where for copper Rm = 57 MPa and S = r02. Fig. 
5 shows the Kmax dependence of the radius r0 (Kmax ~ 1/r09/5). 

Restitution coefficient is Rf = 1. 

 
Fig. 5. The dependence of the dimensionless coefficient Kmax = Pmax/S/Rm    

  on r0 radius according to Eqs (46) and (45) 

It was noticed in the paper [41] that the Hertz model gives re-
sults consistent with the experiment if the duration of the collision 
ts is much longer than the longest period of free oscillation T of the 
colliding bodies, ts/T>10. On the other hand, according to Eq. (47), 
the impact duration decreases with increasing speed. Of course, 
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there is a certain upper limit for the speed V0,max, above which the 
formulas obtained from Hertz's theory will lead to too considerable 
errors. 

This consideration is often emphasised in the impact theory 
literature [41], but undeservedly, little attention is paid to another 
limitation of Hertz's theory. It is associated with the possible ap-
pearance of plastic deformations in the colliding bodies and failure 
to take into account the dynamic properties of strength parame-
ters, e.g., the tensile strength parameter Rm. 

If, in the post-impact conditions, the anvil was not damaged 
and the specimen changed shape due to plasticity (the radius of 
the specimen contact surface increased) but was not damaged, 
then the tensile strength in the specimen was not achieved. The 
shape of deformation and cracking in the Taylor bar impact test is 
the so-called mushrooming. Knowing the impact speed and the 
parameters of the collision bodies, we can calculate the maximum 
value of the force acting on the sample. This gives the opportunity 
to estimate the value Rm. 

The dynamic yield point and the dynamic strength of the mate-
rial, revealed under impact loads, assume values greater than the 
yield point and the material's tensile or compressive strength 
determined during static tests [13]. 

Let us note that the assumption made by Hertz about the line-
ar elasticity of the material is not justified at sufficiently high im-
pact velocities. Thus, Hertz's theory is probably wrong with most 
practical impact problems. Therefore, the work takes into account 
the deflection of the surface of the elastic half-space. 

The performed calculations of the issue under consideration 
are shown in Fig. 6. We received Pmax = P(ts/2) = 160,000 N, 

ts = 27 s and v(ts) = 99.1 m/s. In Fig. 5, the dimensionless 
factor was calculated, Kmax = Pmax /S/Rm = 14.11. Taking the de-
flection of the surface of the elastic half-space into account leads 
to an extension of the collision time and a reduction in the maxi-
mum force value Pmax to 11.6%. 

 

Fig. 6. Dependence of dimensionless contact stress P(t)/(r0
2)/Rm arising   

 during the collision on time for the speed of V0 = 100 m/s 

Analogously to Fig. 6, Fig. 7 shows the time dependencies of 
the component of vertical displacements w(r, 0, t) to the surface at 
four observation points. Comparing the obtained results with the 
displacements of the surface points from Awrejcewicz and Pyryev 
[40] for the disorder P(t)=H(t), we do not observe the moment of 
arrival of transverse S and Rayleigh R waves. For our case, the 

duration of the collision ts is too high for the moments of arrival of 
longitudinal P, transverse S and Rayleigh R waves to be visible. 
The shape of the graphs repeats the shape of the interaction 
force, but away from the source, a slight negative deflection ap-
pears, the amplitude decreases and the width of the disturbance 
increases. 

 
Fig. 7. Evolution of the deflection of an elastic half-space w(r, 0, t) due to  

 load P(t) acting on the surface of a circle with a radius  
 of the sample r0 for r = 0.1 r0 (curve 1), for r = r0 (curve 2),  
 for r = 3r0 (curve 3) and for r = 5r0 (curve 4) 

 
Fig. 8. Evolution of the axial displacement of an elastic half-space w(0,z,t)  

 due to load P(t) acting on the surface of a circle with a radius  
 of the sample r0 for z = 0 (curve 1), for z = r0 (curve 2), for z = 3r0  
 (curve 3) and for z = 5r0 (curve 4) 

Fig. 8 shows the timing of the axial displacement of the elastic 
half-space w(0, z, t) to load P(t) acting on the surface of a circle with a 

radius of the sample r0 for r = 0.1 r0 (curve 1), for r = r0 (curve 2), for 

r = 3r0 (curve 3) and for r = 5r0 (curve 4). The shape of the graphs 
repeats the shape of the interaction force, but away from the 
source, a slight negative deflection P(t) appears, the amplitude 
decreases and the width of the disturbance increases. In point 
(0, r0) at t = r0/c1= 0.67 μs, longitudinal wave P will appear, in point 

(0, 3r0) at t = r0/c1= 2.0 μs and in point (0, 5r0) at t = 5r0/c1= 3.3 μs 
(see Fig. 8). 
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Fig. 9. Evolution of normal stress σzz(0, z, t) on the anvil axis due to load  

 P(t) acting on the surface of a circle with a radius of the sample r0  

 for z = r0 (curve 1), for z = 3r0 (curve 2) and for z = 5r0 (curve 3) 

 

Fig. 10. Evolution of normal stress σzz(r, z, t) in the centre of the anvil due 

to the load P(t) acting on the surface of a circle with a radius  
of the sample r0 for z = r = 2r0 /20.5 (curve 1), for z = r = 3r0 /20.5 
(curve 2) and for z = r = 5r0 /20.5 (curve 3) 

Fig. 9 shows dimensionless normal compressive stresses 
σzz(0, z, t)/Rm on the anvil axis due to load P(t) acting on the sur-
face of a circle with a radius of the sample r0 for z = r0 (curve 1), 
for z = 3r0 (curve 2) and for z = 5r0 (curve 3). The amplitude of 
compressive stresses decreases. In point (0, r0) at t = r0/c1= 0.67 

μs, longitudinal P stress wave will appear, in point (0, 3r0) – at 
t = r0/c1= 2.0 μs, and in point (0, 5r0) – at t = 5r0/c1= 3.3 μs (see 
Fig. 9).  

Fig. 10 shows dimensionless normal stresses σzz(r, z, t)/Rm in 
the centre of the half-space on a cone at the same distances in 
point (20.5r0, 20.5r0) (curve1), in point (3r0/20.5, 3r0/20.5) (curve 2) and 
in point (5r0/20.5, 5r0/20.5) (curve 3). The highest values of the com-
pressive stress amplitudes decrease with increasing distance of 
the observation points from the disturbance site, but at the end of 
the stress disturbance, they change the sign into tensile stress. 

 

 

Fig. 11. Evolution of normal stress σrr(r,0, t) on the surface of the anvil 

due to the load P (t) acting on the surface of the circle with  
the radius of the sample r0 for r = r0 (curve 1), for r = 3r0 (curve 2) 
and for r = 5r0 (curve 3) 

Fig. 11 shows the time dependencies of normal stress 
σrr(r, 0, t) on the anvil surface due to load P(t) acting on the sur-
face of a circle with a radius of the sample r0 for r = r0 (curve 1), for 
r = 3r0 (curve 2) and for r = 5r0 (curve 3). For example, let us 
consider an observation point (5r0, 0) located on the anvil surface 
within 5 radiuses of the sample-anvil contact area. By the time 

t = (5r0  r0)/c1= 2.67μs, there are no disturbances. At t = 4r0/c1, 
there will be a disturbance with the speed of the longitudinal wave 
c1. The arrows on the graphs correspond to the time of arrival at 
the appropriate observation points of the disturbance from the 
centre of the contact area of the sample with the anvil.  

5. CONCLUSION  

A mathematical model of the dynamics of the contact system 
of the test sample with the anvil (semi-elastic space) during their 
collision was developed. The proposed method of calculations 
using classical Laplace and Hankel transformations allows us to 
solve the problem for the spatial model of the body. 

The proposed analysis enables the calculation of stresses and 
displacements in an elastic half-space, as well as the kinematics 
of the tested sample. 

The original elements of the paper include the proposed gen-
eral approach to solving the problem of contact dynamics. The 
presented approach consists in determining the impact force on 
the sample P(t) during the collision as a common solution to the 
problem for the tested sample and the problem for an elastic 
semi-space under the conditions of the assumptions of Hertz's 
theory. The resulting force P(t) allows the determination of dis-
placements and stresses. 

The performed calculations showed that during a sample colli-
sion with a half-space under the conditions under consideration, 
the contact force P(t) did not have a significant effect on the for-
mation of visible waves: transverse (S) and Rayleigh (R) waves. 
This is because the rate of load change is not sufficient. 

The obtained solution can be used to determine the dynamic 
strength limit of materials. The calculations made as part of the 
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paper showed more than threefold (1.6  105 N/S/Ry = 3.18) 
increase of the dynamic yield point for steel and more than twofold 

(1.6  105 N/S/Rm = 2.65) increase in dynamic tensile strength for 
steel to that determined in classical conditions. Corresponding 

values for a copper sample give a 14-fold (1.6  105 
N/S/Rm = 14.0) increase of the dynamic limit of tensile strength. 
Considering that the sample after reflection has the shape of a 
mushroom with a radius r1 = 0.006 m, we receive a sixfold 

(1.6  105 N/S1/Rm = 6.2) increase of the dynamic tensile strength 

limit, where S1 = r12. 
The method proposed here can be useful for the dynamic 

analysis of issues such as the collision of a sample with a layered 
body [42]. 
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