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Abstract: Considering experimental implementation control laws on digital tools that measurement cards are discharged every time unit 
one can see that time of simulations is partially continuous and partially discrete. This observation provides the motivation for defining  
the Grünvald-Letnikov fractional operator with measurable order defined on continuous-discrete time scale. Some properties  
of this operator are discussed. The simulation analysis of the proposed approach to the Grünwald-Letnikov operator with the measurement 
functional order is presented. 
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1. INTRODUCTION 

It is well known that during control system design process, 
one of the most important steps is to develop the proper mathe-
matical model of an analyzed control plant. Generally, the analysis 
of experiment results shows that there is a large class of systems 
where behavior of real phenomena is not properly explained by 
using the classical calculus. It has been found that these systems 
not only contain non-local dynamics but can also be described 
using fractional-order operators and their properties, see for ex-
ample in control engineering, signal processing, electronics and 
electrical engineering, (Buslowicz and Nartowicz, 2009; Djen-
noune et al., 2019; Kavuran et al, 2017, Ortigueira, 1997, Balaska 

et al., 2020). Among the other, an example of the control plant 
that shows that fractional calculus applied to the modelling of its 
behavior is better than the classical tools is the voltage – current 
relation of a semi-infinite lossy transmission line (Wang, 1987), 
the diffusion process of the heat into a semi-infinite (Podlubny et 
al., 1995), modeling and simulation of plant models (Alagoz et al., 
2019). In automatic regulation and its industrial applications to 
process controlling the most popular and commonly used are  PID 
controllers. However, it is known that controllers of fractional 
orders (FOPID) in many cases can provide better optimal prefer-
ences and behaves more robust than the classical ones, see 
(Ostalczyk et al., 2015; Patniak et al., 2002; Tepljakov et al., 
2018). It follows from the fact that such controllers have more 
tuning freedom. However the usage of FOPID controllers usually 
requires some approximations which makes their applications 
more complex. 

Since the Grünwald-Letnikov fractional order operator in au-
tomatic control and industry applications has been considered as 
the most useful and a proper tool for approximations in the scope 
of numerical solutions (see, e.g., Coimbra, 2003; Patniak et al., 
2002; Alagz and Alisoy, 2018; Tepljakov, 2017 and references 
therein), we lay attention on it. The practical usefulness of this 

operator is due to the fact that its value depends on all past values 
of the fractionally derived function, so the history or memory of the 
process in naturally included in the analysis. Also, it provides a 
recursive solution in time and hence reduces computing time 
(Alagoz et al., 2019). However, taking into account the limitation of 
computational resources, computational complexity should be as 
low as possible. There are works addressed to optimization of 
number steps in approximation used in computing of the Grün-
wald-Letnikov fractional order operator (see Stanislawski and 
Latawiec, 2012; Alagoz et al., 2019; Tepljakov et al., 2012) and 
references therein.  

The natural analytic extension of fractional order operators are 
variable order ones. In some ways, this is a natural direction, not 
only from mathematical point of view, but also arises from model-
ling of real-word phenomena (Patniak et al., 2002). The first works 
in that scope have already shown that it is a good approach to 
modelling but not easy research topic (see, e.g. Coimbra, 2003; 
Lorenzo and Hartley, 2002; Samko and Ross, 1993). Note that in 
this case, there exist four different definitions of these operator 
with variable order (see Sierociuk et al., 2013; Sierociuk et al., 
2015; Valerio and Sa da Costa, 2001). These definitions have 
been used, for example, in modelling of FOPID controllers as well 
as in heat transfer process (Sierociuk and Macias, 2013). The 
influence on the shaping of the transient characteristics of a 
closed-loop systems has been analyzed in Ostalczyk et al. (2012, 
2015). In each case, the variable order has been taken as a func-
tion defined on the set of natural numbers. As it is known from the 
engineering point of view in measurement process digital tools are 
used to test different control plants. This means that measurement 
cards are discharged periodically every time unit 𝛿, so the 
measurment time is not only discrete, but partially continuous and 
partially discrete as on time scales (Bohner and Peterson, 2001). 

We concentrate on the classical approach to the Grünwald-
Letnikov fractional order operator. Taking into account its imple-
mentation in digital systems (Alagz and Alisoy, 2018, Koszewnik 
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et al., 2016, Koszewnik et al, 2018, Pawluszewicz et al., 2019), it 
is natural to consider a fractional order of this operator as a func-
tion defined on continuous-discrete time scale, that is, on a model 
of time that extends the classical time domain of dynamical sys-
tems (Bohner and Petrson, 2002). This problem, as well as the 
motivation to present work, is discussed in Section 2. The maxi-
mum bandwidth of the signal occurring during discharging of the 
measuring card may not be a good measure of signal changes, in 
the case of uniform sampling, some of the samples may be un-
necessary. To eliminate this redundancy, non-uniform discharging 
can be used. Application of the non-uniform sampling allows to 
reduce the amount of measured data and next decrease power 
consumption for computation, which is important in industrial 
applications. In Section 3, there is introduced the Grünwald-
Letnikov operator with the discrete-continuous order following 
from the non-uniform process of discharging measurement cards. 
In Section 4, the simulation analysis of proposed approach is 
presented. 

2. MOTIVATION 

     It is known that the continuous time control law of fractional 

order PID controller usually is expressed as 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) +

𝐾𝑖𝐷
𝜆𝑒(𝑡) + 𝐾𝑑𝐷

𝜇𝑒(𝑡) where orders 𝜆, 𝜇 are nonnegative, 

𝑢(𝑡) denotes the control signal, 𝑒(𝑡) is the control error between 
the desired value and the measured value, 𝐷 is a fractional opera-
tor. During experimental implementation or verification of this 
control law, digital tools are commonly used. This means that:  

 parameters 𝐾𝑝, 𝐾𝑑 , 𝐾𝑖   are recalculated by considering par-

ticular gains of A/D and D/A (Fig. 1) converters inbuilt to 
measure digital tools, 

 steady state error, which is strictly connected with the orders 
of fractional operator, is changing during the regulation pro-
cess.   

 
Fig. 1. Impulsator switched periodically for 1-δ time units 

      Furthermore, taking into account that measurement cards are 
discharged periodically every time unit and assuming that the 
discharging takes δ > 0 time units, time of simulations is partially 
continuous and partially discrete (not only discrete), see Fig. 1 
and Fig. 2.  

 
Fig. 2. Clock impulsator with duty cycle equal to 1-δ  of time units 

In a general case, this situation can be described using the 
following model of time presented on Fig. 3, see (Bohner and 
Petrson, 2002): 

𝑃1−𝛿,𝛿  = ⋃ [𝑘, 𝑘 + 1 − 𝛿]𝑘∈ℕ0   (1) 

 

Fig. 3. Time scale P1−δ,δ of signal from clock impulsator   

Then the previous time instant of 𝑡 ∈ 𝑃1−𝛿,𝛿 , denoted as 

𝜌(𝑡), is 
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In fact  𝜌(𝑡) defines the backward jump operator of t. The dif-
ference between t and its previous time instance 𝜌(𝑡), called 

(backward) graininess function 𝜐 : 𝑃1−𝛿,𝛿 ⟶ ℝ+⋃{0}, is de-

fined as: 

𝑣(𝑡): = 𝑡 − 𝜌(𝑡). 

Putting 𝜌𝑙 = 𝜌 ∘ … . .∘ 𝜌⏟      
𝑙 𝑡𝑖𝑚𝑒𝑠

 and 𝜌0(𝑡) = 𝑡 inductively, one can 

show that 𝜌𝑛(𝑡) = 𝑡 − 𝜈𝑛(𝑡) (Ortigueira et al., 2016). Then, 
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for any  𝑡 ∈ 𝑃1−𝛿,𝛿 . 

       Similarly, as in (Ortigueira et al., 2016), on the time model 
given by (1), one can look as a model of time defined by a set of 

discrete time instants 𝑡𝑛, 𝑛 ∈ ℤ+, and corresponding (backward) 
graininess. These instants are consecutive boundary point defin-
ing a closed interval, in which graininess is null inside the intervals 

starting in moment 𝑘 and finishing in moment 𝑘 + 1 − 𝛿. Follow-
ing Ortigueira et al. (2016), one can define the graininess interval 
as the width of the considered interval. For time model (1), we 

have 𝑣([𝑘, 𝑘 + 1 − 𝛿])=1-𝛿. Then, 𝑡𝑛 = 𝑡𝑛−1 + 𝑣𝑛, 𝑛 ∈ ℤ+, is 
the direct graininess. 
 
Remark 1. Such approach to time model (1) allows to consider 
not only a uniformly discharge periodically measurement cards but 
also a nonuniformly discharged measurement cards with dis-

charge time units 𝛿𝑘, 𝑘 ∈ ℕ. Nonuniform sampling in some situa-
tions reduces the required computing power and data processing. 
It is also possible to optimize the energy consumption of the con-
troller, and thus save energy necessary in the control processes 
(see, e.g. Janczak et al., 2016; Kondratiuk et al., 2018). 

3. THE GRÜNWLAD-LETNIKOV OPERATOR WITH DIS-
CRETE-CONTINUOUS FRACTIONAL ORDER 

      Let us consider a function 𝐶: 𝑃1−𝛿,𝛿  ×  ℤ+⋃{0} ⟶ ℝ de-

fined as follows: 
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where 𝜌 is the graininess interval and  𝜌𝑙 = 𝜌 ∘ …∘ 𝜌⏟    
𝑙 𝑡𝑖𝑚𝑒𝑠

. From (3), 

it follows that the following recursive relation 

𝐶𝛼(𝜏)(𝑠) = 𝐶𝛼(𝜏)(𝑠 − 1)
𝛼(𝜌𝑠(𝜏))

𝑠
  holds for given 𝑠 ≥ 1. 

 

Proposition 2. For any natural 𝑠 and 𝑗 such that s > j , it holds 

𝐶𝛼(𝜏)(𝑠) ± 𝐶𝛼(𝜏)(𝑗)

=  
𝑗!

𝑘!
𝐶𝛼(𝜏)(𝑗) (∏ (−1)𝑘−𝑖𝛼(𝜌𝑖(𝜏)) ±

𝑘

𝑖=𝑗+1

∏ 𝑖

𝑗

𝑖=𝑗+1

) 

Proof. Thesis follows from the fact that 

𝐶𝛼(𝜏)(𝑠) ± 𝐶𝛼(𝜏)(𝑗) =
(−1)𝑗

𝑗!
𝛼(𝜏)… . 𝛼 (𝜌𝑗(𝜏)) ∙

[
(−1)𝑘−𝑗

(𝑗+𝑘)….𝑘
𝛼 (𝜌𝑗+1(𝜏))…𝛼(𝜌𝑘(𝜏)) + 1]. □ 

Definition 3. The Grünwald-Letnikov – type fractional operator 

Δ𝛼(𝜏) of functional order 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ, for a function 

𝑥 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ is defined as 

(Δ𝛼(𝜏)𝑥)(𝜏): = ∑ 𝐶𝛼(𝜏)(𝑠)𝑥(𝜌𝑠(𝜏))∞
𝑠=0    (4) 

     In (4), weight function 𝐶𝛼(𝜏)(𝑠) is given by formula (3). Note 
that in a natural way, it contains information about the history of 

the process mathematically described  by function 𝑥 ∶ 𝑃 1−𝛿,𝛿 ⟶

ℝ . Since 𝛼 ∶ 𝑃 1−𝛿,𝛿 , then this history strictly depends on the 

process of discharging a measurement card. Moreover, since the 

weight function 𝐶𝛼(𝜏)(𝑠) is defined by the graininess interval, it 
follows that charging/discharging of the card can be done nonuni-

formly. If function 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ is unbounded, then for a 

fixed s, the operator (4) may not be bounded or even may not 

exists. We assume that for given 𝑥 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ, function 

𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ is bounded and measurable. The domain of 

Grünwald-Letnikov – type operator Δ𝛼(𝜏) is formed by two sets: a 
set 𝑁𝛿 = {𝑘 ∈ ℤ+ ∶ 𝑘 + 1 − 𝛿} of discrete/isolated points and 

a set of intervals {𝑘 ∈ ℤ+ ∶ [𝑘, 𝑘 + 1 − 𝛿]}.  
     In practical implementations, instead of infinite sum in (4), 
there is need to use a finite one 

(Δ𝐽
𝛼(𝜏)𝑥)(𝜏): = ∑ 𝐶𝛼(𝜏)(𝑠)𝑥(𝜌𝑠(𝜏))𝐽

𝑠=0    (5) 

where, following (Stanislawski Latawiec , 2012) and remembering 
that we look at time model (1) as a model of time defined by a set 

of discrete time instants 𝑡𝑛,   𝑛 ∈ ℤ+, corresponding to the (back-

ward) graininess,𝐽 = min(𝑡𝑛, 𝐽)̅ and 𝐽 ̅ is the upper bound to s 

when 𝑡𝑛, > 𝐽.̅ From (5), it follows that 

(Δ𝐽
𝛼(𝜏)𝑥)(𝜏) =

[1 𝐶𝛼(𝑡)(1) … . 𝐶𝛼(𝑡)(𝐽)] [

𝑥(𝑡)

𝑥(𝜌(𝑡))
… .

𝑥(𝜌𝑛−𝑎(𝑡))

]  (6) 

Proposition 4. If for every 𝑡 ∈ 𝑃1−𝛿,𝛿 , there is a real number K 

such that |𝑥(𝜏)| ≤ 𝐾 and 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ [0,1], then 

|(Δ𝛼(𝜏)𝑥)(𝜏) − (Δ𝐽
𝛼(𝜏)

𝑥)(𝜏)| ≤ 𝐾2𝑒. 

Proof. Since 

|(Δ𝛼(𝜏)𝑥)(𝜏) − (Δ𝐽
𝛼(𝜏)

𝑥)(𝜏)|

=  |∑𝐶𝛼(𝜏)(𝑠)𝑥(𝜌𝑠(𝜏)) − 

∞

𝑠=0

∑𝐶𝛼(𝜏)(𝑠)𝑥(𝜌𝑠(𝜏)) 

𝐽

𝑠=0

|

≤ ∑|𝐶𝛼(𝜏)(𝑠)𝑥(𝜌𝑠(𝜏)) ∑ 𝐶𝛼(𝜏)(𝑣)𝑥(𝜌𝑣(𝜏)) − 1

∞

𝑣=𝐽+1

|

𝐽

𝑠=0

≤𝐾∑|𝐶𝛼(𝜏)(𝑠)| [ ∑ |𝐶𝛼(𝜏)(𝑣)𝑥(𝜌𝑣(𝜏))] + 1|

∞

𝑣=𝐽+1

𝐽

𝑠=0

≤ 𝐾2∑|𝐶𝛼(𝜏)(𝑠)| ∑ |𝐶𝛼(𝜏)(𝑣)|

∞

𝑣=𝐽+1

𝐽

𝑠=0

                                (7) 

Since 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ [0,1], then |𝐶𝛼(𝑡)(𝑠)| ≤
1

𝑠!
, and from (7), 

it follows that  

|(Δ𝛼(𝜏)𝑥)(𝜏) − (Δ𝐽
𝛼(𝜏)

𝑥)(𝜏)| ≤ 𝐾2∑
1

𝑠!
= 𝐾2𝑒∞

𝑠=0 . □ 

4. SIMULATION ANALYSIS 

In this Section, simulation analysis of the Grünwald-Letnikov 

operator with the discrete-continuous order 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ is 

presented. To this aim, a process of switching on/off of the switch 
occurring in the holding circuit has been analyzed in detail based 
on electrical scheme shown in Fig. 4.  

ip(t) iC Vp(t)Cp R

1-δ 

 
Fig. 4. Electrical circuit of RC system 

       Taking into account the behavior of the classical switch and 
the fractional operator, the capacitor has been firstly charged in 

the time 1 − 𝛿 in results of switching on/off the switch with ran-
domly occurring delay. Next, the switch is turned off. It has led to 
discharging of the capacitor by time 𝛿 and also getting value of 

the voltage signal 𝑥(𝜏) from this element to further analysis. As a 
result, the whole process of switching on/off the switch is change-
able, especially in time interval [1 − 𝛿, 𝛿]. 
      The proposed approach allowed to check the influence func-

tion 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ, on fitting of the Grünwald-Letnikov – type 

fractional operator Δ𝛼(𝜏) of functional order 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ in 

reference to three base signals. As the first, the sinusoidal signal 

𝑥(𝑡) = sin (0.04𝑡), next 𝑥(𝑡) = 𝐻(𝑡 − 𝑎), where 𝐻(⋅) de-

notes the Heaviside’s step function, and as the last one, 𝑥(𝑡) =
𝑒−0.1𝑡  signal have been considered for function α, respectively. 

The obtained results for the given signals on time domain 𝑃 1−𝛿,𝛿 
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presented in Figs. 5–7 showed that the signal with the Grünwald-

Letnikov – type fractional operator of order 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ is 

best customized to the base signal 𝑥(𝑡) for ever smaller values of 

the function 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ also of a function that has increas-

ingly smaller values. Such behavior is especially visible for the 
variable value of the sampling step in the Grünwald-Letnikov – 

type fractional operator of order 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ, where in-

creasing this value has led to weaker fitting to the base signals 

𝑥(𝑡). 

 
Fig. 5. The comparison of sinusoidal discrete-continuous signal with 

different values of function 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ (for 𝛼(𝑡) = 𝑡, 
𝛼(𝑡) = 1 − 𝑡, 𝛼(𝑡) = 0.5 respectively) to the base function 

𝑥(𝑡) = sin (0.04𝑡) 

 
Fig. 6. The comparison of exponential discrete-continuous signal with 

different values of function 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ (for 𝛼(𝑡) = 𝑡, 

𝛼(𝑡) = 1 − 𝑡, 𝛼(𝑡) = 0.5 respectively) to the base function 

𝑥(𝑡) = 𝑒−0.1𝑡 

In the second step, the influence of parameters a and b in 

function 𝑥(𝑡) = 𝑎 𝑠𝑖𝑛(0.04𝑡) + 𝑏, 𝑡 ∈ 𝑃1−𝛿,𝛿, has been addi-

tionally analyzed. To this aim, again the base sinusoidal signal 
𝑥(𝑡) = 𝑠𝑖𝑛 (0.04𝑡) has been taken. The obtained result in Fig. 8 
once again showed that the best customization to the base signal 

𝑥(𝑡) has been achieved for the smallest values of both parame-
ters of function α(∙). As a result, it leads to the conclusion that 
real industrial processes can be effectively controlled by using the 
discrete fractional control systems with variable sampling step and 
low values of the Grünwald-Letnikov – type fractional operator of 

functional order α ∶ P 1−δ,δ ⟶ ℝ. 

 
Fig. 7. The comparison of the Heaviside step function with delay discrete-

continuous signal with different values of function 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶

ℝ (for 𝛼(𝑡) = 𝑡, 𝛼(𝑡) = 1 − 𝑡, 𝛼(𝑡) = 0.5 respectively) to the 

base function 𝑥(𝑡) = 𝐻(𝑡 − 𝑎) 

 
Fig. 8. The comparison of sinusoidal discrete-continuous signal with 

different values of function 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ (for 𝛼(𝑡) = 𝑡, 

𝛼(𝑡) = 1 − 𝑡, 𝛼(𝑡) = 0.5 respectively) to the base function 

𝑥(𝑡) = 𝑎 sin(0.04𝑡) + 𝑏 

Consequently, taking into account Figs. 4–7, it can be con-
cluded that real industrial processes can be effectively controlled 
by using the discrete fractional control systems with variable 
sampling step and low values of the Grünwald-Letnikov – type 

fractional operator of functional order 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ. 

5. CONCLUSIONS 

       The realization problem for Grünwld-Letnikov fractional oper-
ator with a measurable order on continuous-discrete time scale 
was studied. For this aim, firstly, some parameters from time scale 
calculus associated with sampling time (uniform and non-uniform) 
used in the measurement instruments like backward graininess 
was discussed. The proposed approach allowed to suppose that 
the process of charging and discharging of the capacitor inbuilt to 
the measurement cards of A/D and D/A converters could also be 
uniform. As a result, the practical implementation of the proposed 
approach for the measurement process can lead to reduction of 
consumption energy needed to control some industry processes 
by real time processor. Next, the proposed approach was checked 
in the simulation analysis. In order to do this, three base discrete-

continuous signals 𝑥(⋅), such as sinusoidal signal, the Heaviside 
step function and exponential function for constant and changea-
ble values of function order 𝛼(∙), were considered. The obtained 
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results, given in Figs. 4–7 for the given signals on time domain 

𝑃 1−𝛿,𝛿 , showed that the signal Grünwald-Letnikov – type frac-

tional operator of functional order 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ is best cus-

tomized to the base function 𝑥(⋅) for even smaller values of the 

function 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ also of a function that has increasingly 

smaller values.  
     Finally, it can be concluded that real industrial processes can 
be effectively controlled by using the discrete fractional control 
systems with variable sampling step and low values of the Grün-
wald-Letnikov type fractional operator with variable order defined 
on continuous-discrete time domain. 
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