
Oleksiy Bondar DOI 10.2478/ama-2020-0017
Predictive Neural Network in Multipurpose Self-Tuning Controller

114

PREDICTIVE NEURAL NETWORK IN MULTIPURPOSE SELF-TUNING CONTROLLER

Oleksiy BONDAR*

*Electronic Microwave Devices Department, Institute of Radio Astronomy of the National Academy of Sciences of Ukraine,
4 Mystetstv St., Kharkiv, 61002, Ukraine

bondarrian@gmail.com

received 16 April 2020, revised 20 July 2020, accepted 22 July 2020

Abstract: A very important problem in designing of controlling systems is to choose the right type of architecture of controller.
And it is always a compromise between accuracy, difficulty in setting up, technical complexity and cost, expandability, flexibility
and so on. In this paper, multipurpose adaptive controller with implementation of artificial neural network is offered as an answer
to a wide range of tasks related to regulation. The effectiveness of the approach is demonstrated by the example of an adaptive
thermostat. It also compares its capabilities with those of classic PID controller. The core of this approach is the use of an artificial
neural network capable of predicting the behaviour of controlled object within its known range of parameters. Since such a network,
being trained, is a model of a regulated system with arbitrary precision, it can be analysed to make optimal management decisions
at the moment or in a number of steps. Network learning algorithm is backpropagation and its modified version is used to analyse
an already trained network in order to find the optimal solution for the regulator. Software implementation, such as graphical user
interface, routines related to neural network and many other, is done using Java programming language and Processing open-source
integrated development environment.

Keywords: Artificial neural network, adaptive regulator, backpropagation algorithm, system modelling

1. INTRODUCTION

Nowadays, the use of artificial neural networks in control
processes and other activities is a very popular area of research.
And this is understandable, since these structures are a good tool
in the modelling of complex systems, for which it is difficult to find
a simple mathematical solution. It should also be remembered
that artificial neural networks are capable of providing high quality
data processing even in the conditions of their incompleteness.
Such a predicting model is successfully being using for weather
forecasting in short term for some localities (Wica et al., 2019). It
can also be useful to provide neural classification mechanism in
genetics researches (Liu et al., 2019; MacLean, 2019). The usage
of artificial neural network (hereinafter referred to as ANN) is a
reasonable solution for power flow regulators (Ma et al., 2018).
Also, ANN can be used as a tool for detecting stable equivalent
series resistance (ESR) in voltage regulator characterization
(Zaman et al., 2018), in mechatronic hydraulic drive regulation
(Burennikov et al., 2017) or autopilot (Zhao et al., 2018). However,
researchers are particularly curious about the possibility of using
artificial neural networks in the automatic tuning of PID regulators
(Ayomoh and Ajala, 2012; Hernández-Alvarado et al., 2016;
Pirabakaran and Becerra, 2002; Zhang et al., 2016; Du et al.
2018; Han et al., 2017). The method proposed in this paper
excludes the PID section from the controller system. As will be
shown, a trained neural network with a multi-step error estimation
module is sufficient for high quality control of a wide range of
systems providing flexible controls. Moreover, the network does
not require any specific or detailed data, rather accurate system
data in the regulatory range. To demonstrate the principle

operation of the multipurpose controller as thermostat, a software
model of the solid body temperature under the influence of
external factors was created. Such an example is simple to
understand and easily portable to a real thermostat or to another
type of system. For the software implementation, Processing
integrated development environment (IDE) was selected, which
uses a Java programming language. It speeds up and facilitates
both writing and debugging of programs for which it is important to
have as many graphical evaluation options as possible.

2. DESCRIPTION OF MULTIPURPOSE NEURONAL
NETWORK-BASED CONTROLLER

In order to understand the principle of operation of a
multipurpose adaptive controller, it is necessary to consider its
work in stages with a detailed analysis of the work of each
element. We list these stages. Primary training of predictive ANN,
during which the regulator acquires the ability to assess the state
of regulated object in the future, based on the state of that object
at the present moment. Further, the already trained ANN is
embedded in a multi-step planning mechanism, where, thanks to
the neural network's ability to approximate functions, we obtain a
model of the object's behaviour depending on the actions of the
controller itself on a certain number of steps forward. The
predicted sequence of states of the control object over time is
used to estimate the error relative to the desired control result for
each of these states. Depending on the approach chosen in the
assessment, these error values are used to optimize the
controller's actions in the appropriate way. First of all, we will look

mailto:bondarrian@gmail.com

DOI 10.2478/ama-2020-0017 acta mechanica et automatica, vol.14 no.2 (2020)

115

at the core of the whole system – one-step predictive artificial
neural network.

2.1. One-step predictive artificial neural network

The module is so called Feedforward Backpropagation Neural
Network. Quite traditional architecture of network with neurons
(knots) grouped into layers (see Fig.1). There are three types of
layers: input, hidden, and output. The input layer is a set of
corresponding signals that the module must process to obtain the
output signal. In this case, the following signals are: RV –
regulated value, RA – regulator action. Regulated value is the
parameter that should be controlled such as temperature (for
thermostats), speed or torque (for motor controller), distance,
pressure or voltage and so on. Regulator action is any relevant
action that affects a regulated value such as change of voltage,
PWM, power, or any other parameter that the regulator may
manipulate during control.

RV RA

1-1k 1-2k 1-jk

2-1k 2-2k 2-jk

i-1k i-2k i-jk

RV+

RV RA

RV+

Fig. 1. The scheme of one-step predictive ANN

Hidden layers can contain a certain number of neurons in
each layer and consist of a certain number of layers. The number
of hidden layers depends on the complexity of the behaviour of
the control object, but in most cases, one hidden layer is sufficient
(Heaton, 2008). The number of neurons in each layer is defined
as a balance between the precision with which the neural network
as a model is able to reproduce the behaviour of the system on
which it is trained and the complexity of implementing such a
system in a software sense. Each additional neuron in the layer
increases the accuracy with which the system can make
predictions as a whole, but it also increases the computational
power requirements of the equipment on which this network must
operate. For each neuron of the hidden or output layers, the
internal state of the neuron is first calculated based on the signals
coming from the previous layer. As it was stated, the prediction
module trains with the backpropagation algorithm, but there are
no restrictions on using other algorithms such as genetic or
imperialist competitive or others (Elsisi, 2019). Equation 1 shows
how to calculate the internal state of the hidden or output neuron
in layer with 𝑖 neurons and previous layer with 𝑙 neurons. All other
neurons in this layer are calculated similarly by replacing the

corresponding index 𝑖 with the desired one.

𝑠𝑡𝑎𝑡𝑒𝑘𝑖
= (∑ (𝑤𝑙𝑖 ∙ 𝑜𝑢𝑡𝑙)𝑙) + 𝑏𝑘𝑖

 (1)

where: 𝑠𝑡𝑎𝑡𝑒𝑘𝑖
– internal state of neuron in a row of 1 to 𝑖 of

hidden or output layer, 𝑙 – the number of neurons in the previous

layer, 𝑤𝑙𝑖 – the weight of the connection between the calculated

neuron and the output of neuron in a row of 1 to 𝑙 from the
previous layer (𝑜𝑢𝑡𝑙), 𝑏𝑘𝑖

 – offset of the calculated neuron,

makes it possible for the internal state of the neuron not to be 0
when the input signals are 0. After that, the output of the neuron is
calculated. To do this, the resulting internal state of the neuron
must be passed through the activation function. There are
different variants of the activation function, but in this paper, a
linear activation function is used for the output neuron, and a fast
sigmoid (https://stackoverflow.com/questions/10732027/fast-
sigmoid-algorithm) for the hidden layers. The linear activation
function simply transmits to the output of the neuron its internal
state and allows the output value of the neuron to not be limited
by any asymptotes in its range. Which is useful for a network
whose output values may reach values that other activation
functions do not allow. The sigmoid, as a function of activating the
hidden layers, on the contrary, limits the output values in the
range from 0 to 1 and provides nonlinearity in the operation of the
network. Nonlinearity is necessary where the behaviour of the
system to be simulated cannot be reduced to the sum of linear
functions, which is any more or less complex system. The fast
sigmoid (see Eq. 2) is close to the original but significantly
reduces the time to calculate the activation function since it does
not require a floating point exponent.

𝑜𝑢𝑡𝑘𝑖
= {

0.5

1+𝑠𝑡𝑎𝑡𝑒𝑘𝑖
2 , 𝑤ℎ𝑒𝑛 𝑠𝑡𝑎𝑡𝑒𝑘𝑖

< 0

1 −
0.5

1+𝑠𝑡𝑎𝑡𝑒𝑘𝑖
2 , 𝑤ℎ𝑒𝑛 𝑠𝑡𝑎𝑡𝑒𝑘𝑖

≥ 0
 (2)

where: 𝑜𝑢𝑡𝑘𝑖
 – the output value of the neuron in a row of 1 to 𝑖 of

some hidden layer (from 1 to 𝑗, see Fig.1).
The output layer of this model consists of one neuron and

forms the final result of the network. The output 𝑅𝑉+ itself is the
prediction of a regulated value (RV) on the next step of regulation.
It is worth noting that such a network may also contain some
additional inputs and outputs, which on the one hand allow to
expand the number of parameters being monitored for regulation,
and on the other hand create additional opportunities for
optimizing the controller's actions. But it should also be
remembered that increasing the number of inputs and outputs of
the network requires an increase in its complexity, and thus, the
requirements for hardware to process it (Heaton, 2008).

2.2. Multi-step planning mechanism

After considering the one-step predictive ANN as a basic
element of the planning mechanism, we move on to the multi-step
mechanism as a whole.

As can be seen from Fig. 2, the mentioned mechanism is
composed as a sequence of one-step forecasts made using the
previously described neural network. Moreover, since the trained
network is capable of making predictions for the original managed
object within the range of values in which it was trained, only one
forecasting network is needed for any long-range forecast in time.
The first step in forecasting is based on the current data of
regulated value (𝑅𝑉0) and regulator action (𝑅𝐴0). After this, the

Oleksiy Bondar DOI 10.2478/ama-2020-0017
Predictive Neural Network in Multipurpose Self-Tuning Controller

116

forecast for the first adjustment step 𝑅𝑉1 becomes the input value

for the prediction of the next step 𝑅𝑉2, and so on, down to some

step 𝑛 which limits the planning horizon. Increasing the planning
horizon on one hand improves the dynamic characteristics of the
controller, such as stability and the absence of overshoots in
operation, on the other hand, it increases the time to calculate all
the steps. Regarding the values of future control actions

(𝑅𝐴1…𝑅𝐴𝑛−1), prior to optimization, they may be equal to the
current control or may be random in a certain range. Further, all
the results predicted at each step are sent for estimation of a
regulation error in the corresponding module.

One-step

predictive ANN

RV0 RA 0

RV 1

One-step

predictive ANN

RA 1

RV 2

One-step

predictive ANN

RA n-1

RV n

RVn-1

Error

estimation

module

Er

RVset

Fig. 2. The scheme of multi-step planning mechanism

2.3. Error estimation module

As the proposed multi-step controller must be able to make
current decisions based on certain predictions of both behaviour
of the system it manages and its actions, it must also adequately
assess how its actions are approaching in the future achievement
of the goal, avoiding oscillations and overshoots. This function is
performed by the error estimation module. Taking into account the

target value to be reached by the control object (𝑅𝑉𝑠𝑒𝑡), the
controller calculates an error for each predicted step. The
equation to calculate the regulation error in the first step of
forecasting is:

𝐸𝑟1 =
(𝑅𝑉1−𝑅𝑉𝑠𝑒𝑡)2

2
 (3)

where: 𝐸𝑟1 – regulation error in the first step of forecasting.
It should also be remembered that each new step of the

prediction is based on the previous one, and the error of the
neural network modelling of the source system will accumulate.
Therefore, the regulator should not equally evaluate the result at
each step. Equation 4 shows how it calculates the values of the
regulation errors in the range from 2nd to n-th steps.

𝐸𝑟𝑛 =
(𝑅𝑉𝑛−𝑅𝑉𝑠𝑒𝑡)2

2∙(𝑛−1)∙𝑑
 (4)

where: 𝐸𝑟𝑛 – regulation error in the n-th step of forecasting,

n – step number, d – initial depreciation, 𝑅𝑉𝑛 – regulated value in
the n-th step of forecasting. As we can see, from the second step,
the significance of each subsequent regulation error decreases in
arithmetic progression. The initial depreciation is the factor in how
many times the second forecast is less important for the regulator
than the first one. This approach helps to increase the stability of
the regulator and indicate that the first step is the most important
to control because it influences further events by domino effect.

3. THE CONTROL ALGORITHM

After a schematic description of the proposed regulator, we
proceed to the disclosure of the algorithm of its operation. First of
all, let’s say that the given controller can work on different
algorithms of optimization of control action. This paper describes
one such algorithm. A common feature of such algorithms is their
similarity to the backpropagation method in neural network
training. They are also iterative and use a gradient descent
method with dividing into the forward and backward pass. But if
backpropagation in a step-by-step training changes the
parameters of the neural network, then the control algorithms
below do not change the network itself, but use it to detect a
correlation between the action of the controller and the error of
regulation. Mathematically, the optimization step in general is
shown in Equation 5.

𝑅𝐴′ = 𝑅𝐴 − 𝜆 ∙
𝜕𝐸𝑟

𝜕𝑅𝐴
 (5)

where: 𝑅𝐴′ – regulator action after one optimisation step, 𝜆 –

optimization rate, 𝐸𝑟 – predicted regulation error (depends on the
optimization strategy). Thus, at each step of the optimization of
the control action, it changes by a value proportional to the
instantaneous speed of change of the predicted regulation error

with the change of the regulatory action. Moreover, 𝜆 should be

small enough to ensure the smoothness and accuracy of the
process, but not too small, as this will require a large number of

iterations for a successful result. Further work is to calculate
𝜕𝐸𝑟

𝜕𝑅𝐴
.

According to the chain rule, this task can be divided into two
simpler ones (see Eq. 6).

𝜕𝐸𝑟

𝜕𝑅𝐴
=

𝜕𝐸𝑟

𝜕𝑅𝑉
∙

𝜕𝑅𝑉

𝜕𝑅𝐴
 (6)

where: RV – predicted regulated value. So, calculation of
𝜕𝐸𝑟

𝜕𝑅𝑉

allows the error estimation module. And the forecasting network

allows to calculate
𝜕𝑅𝑉

𝜕𝑅𝐴
. But for this, we need to decide on a

strategy by which we will evaluate regulatory errors and optimize
the regulation action. So, let’s describe the strategy of
optimization of the maximum predicted regulation error.

3.1. Maximum Predicted Error Reduction Strategy (MAPERS)

The essence of the Maximum Predicted Error Reduction
Strategy (hereinafter referred to as MAPERS) is to look for that
step in the planning mechanism that predicts more regulation
error than others, then change the planned action in this step

DOI 10.2478/ama-2020-0017 acta mechanica et automatica, vol.14 no.2 (2020)

117

to the side, which should reduce the error in that step (see
Equation 5).

As can be seen from Fig. 3, in each forward pass of the
optimization cycle, the multi-step planning mechanism generates
a chain of forecasts from 𝑅𝑉1 to 𝑅𝑉𝑛, which together with

𝑅𝑉𝑠𝑒𝑡 go to the input of the error estimation module. Here, the
error of regulation of each of the predicted steps is calculated
separately by Equations (3) and (4), after which the step with the

maximum error is selected from all the steps (𝐸𝑟𝑚𝑎𝑥). The

𝐸𝑟𝑚𝑎𝑥 computation ends the forward pass and the back pass
begins, the purpose of which is to change the step with the

predicted 𝐸𝑟𝑚𝑎𝑥 to reduce it. The way of back pass is shown in

the Fig. 4 (arrow pointing from 𝐸𝑟𝑚𝑎𝑥 to 𝑅𝐴𝑚𝑎𝑥).

Er max

RV1 RVn

RV
(𝑅𝑉1 −𝑅𝑉𝑠𝑒𝑡)

2

2

(𝑅𝑉2 − 𝑅𝑉𝑠𝑒𝑡)
2

2 ∙ 𝑑

(𝑅𝑉𝑛 − 𝑅𝑉𝑠𝑒𝑡)
2

2 ∙ (𝑛 − 1) ∙ 𝑑

RV2

MAX

set

Fig. 3. Schematic diagram of the error estimation module for the

Maximum Predicted Error Reduction Strategy (forward pass)

One-step

predictive ANN

RV0 RA 0

RV 1

One-step

predictive ANN

RA 1

RV 2

One-step

predictive ANN

RAmax

RVmax

RVmax-1

Error

estimation

module

Ermax

RVset

Fig. 4. Schematic diagram of the way of back pass for MAPERS

Therefore, Equation 5 for MAPERS can be rewritten according
to the Fig. 4 as:

𝑅𝐴′
𝑚𝑎𝑥 = 𝑅𝐴𝑚𝑎𝑥 − 𝜆 ∙

𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝐴𝑚𝑎𝑥
 (7)

where: 𝑅𝐴𝑚𝑎𝑥 – regulator action in step with maximum value of
predicted regulation error.

We can also rewrite Equation 6 for MAPERS as:

𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝐴𝑚𝑎𝑥
=

𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝑉𝑚𝑎𝑥
∙

𝜕𝑅𝑉𝑚𝑎𝑥

𝜕𝑅𝐴𝑚𝑎𝑥
 (8)

where: 𝑅𝑉𝑚𝑎𝑥 – predicted regulated value in step with maximum
value of predicted regulation error.

To calculate
𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝑉𝑚𝑎𝑥

, we need to refer to Equations 3 and 4,

mentioned earlier. After calculations, we get the corresponding
derivatives:

𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝑉𝑚𝑎𝑥
= {

𝑅𝑉1 − 𝑅𝑉𝑠𝑒𝑡 , 𝑖𝑓 𝐸𝑟𝑚𝑎𝑥 = 𝐸𝑟1
𝑅𝑉𝑛−𝑅𝑉𝑠𝑒𝑡

(𝑛−1)∙𝑑
, 𝑖𝑓 𝐸𝑟𝑚𝑎𝑥 = 𝐸𝑟𝑛 𝑎𝑛𝑑 𝑛 > 1

 (9)

Now to calculate
𝜕𝑅𝑉𝑚𝑎𝑥

𝜕𝑅𝐴𝑚𝑎𝑥

 , we have to dive into the work of the

one-step predictive ANN with the algorithm of backpropagation of
the effect of the signal. Since this algorithm is involved in the
regulator strategy, we are considering that it is worth exploring it in
detail.

3.2. Backpropagation of the Effect of the Signal(BES)

Having a trained neural network, we can use it to determine
the direction and value in which the output parameter will change
when the input is changed. The algorithm of Backpropagation of
the Effect of the Signal (hereinafter referred to as BES) resembles
a backpropagation training algorithm but works without changing

the network settings. Instead, it allows to calculate
𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
 for the

specific status of the inputs and outputs of this network. And that
is just what we have left to do to complete Equation 8. Refer to
Fig. 1 for an explanation of the BES algorithm, but somewhat
simplify the network structure. Let’s leave one input (no matter
which one) and one output. Hidden neurons are located in two
layers, two in each. This network configuration makes it possible
to trace possible signal propagation options and can be easily
scaled to any number of layers with any number of neurons in
each.

IN

1-1k 1-2k

2-1k 2-2k

OUT

IN

OUT

f1 f2

v1 v2

w1

w2 w3

w4

Fig. 5. The scheme of simplified one-step predictive ANN in BES

algorithm

First of all, it should be understood that this scheme provides
for three types of connections between elements. Namely, input-
hidden neuron, hidden neuron-hidden neuron and hidden neuron-
output neuron. Therefore, a description of these three types of
communication enables a general description of the scheme. For

Oleksiy Bondar DOI 10.2478/ama-2020-0017
Predictive Neural Network in Multipurpose Self-Tuning Controller

118

simplicity, each type of communication has its own letter in the
scheme: f for input-neuron, w for neuron-neuron, v for neuron-
output. Although they correspond to the weights for Equation 1.
The BES algorithm starts with a forward pass through the
network, in order to establish all the internal states and outputs of
its nodes. After that, the back passage begins, where the effect of
network input on the output must be calculated. Using a chain
rule, find the effect on the output signal of a neuron from the last
hidden layer, for example, 𝑘2−1:

𝜕𝑜𝑢𝑡

𝜕𝑠𝑡𝑎𝑡𝑒𝑘2−1

=
𝜕𝑜𝑢𝑡

𝜕𝑜𝑢𝑡𝑘2−1

∙
𝜕𝑜𝑢𝑡𝑘2−1

𝜕𝑠𝑡𝑎𝑡𝑒𝑘2−1

= 𝜇𝑘2−1
 (10)

where: 𝜇𝑘2−1
– effect of the neuron 𝑘2−1 state on the output

signal. As for neuron 𝑘2−2, its effect is calculated in the same
way. Remembering Equations (1) and (2), we unpack the
derivatives.

𝜇𝑘2−1
= 𝑜𝑢𝑡𝑘2−1

(1 − 𝑜𝑢𝑡𝑘2−1
) ∙ 𝑣1 (11)

As we go further, we come across a neuron-neuron type
connection, so we write down an equation describing the effect of
neuron 𝑘1−2 on the output signal (with 𝑘1−1 everything is the
same).

𝜕𝑜𝑢𝑡

𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−2

= 𝑜𝑢𝑡𝑘1−2
(1 − 𝑜𝑢𝑡𝑘1−2

) ∙ (𝜇𝑘2−1
∙ 𝑤3 + 𝜇𝑘2−2

∙ 𝑤4)(12)

Finally, we pack the influence of the neurons of the first
hidden layer and write the equation for the input signal.

𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
=

𝜕𝑜𝑢𝑡

𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−1

∙
𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−1

𝜕𝑖𝑛
+

𝜕𝑜𝑢𝑡

𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−2

∙
𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−2

𝜕𝑖𝑛
 (13)

Solving derivatives, we have:

𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
= 𝜇𝑘1−1

∙ 𝑓1 + 𝜇𝑘1−2
∙ 𝑓2 (14)

After solving this problem in a simplified version, we can

generalize its solution to allow search of
𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
 in a network with

an arbitrary number of hidden layers and with an arbitrary number
of neurons in each (but in all hidden layers identical).

For the input of the neural network (see Fig. 1), the effect
equation will be:

𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
= ∑ (𝜇𝑘1−𝑗

∙ 𝑓𝑗)𝑗 (15)

where: 𝜇𝑘1−𝑗
 – effect on output of the neuron of the first hidden

layer which makes neuron in range from 1 to 𝑗, 𝑓𝑗 – weight of the

connection between 𝑘1−𝑗 and input.

For hidden layers (except the last):

𝜇𝑘(𝑖−1)−𝑗
= 𝑜𝑢𝑡𝑘(𝑖−1)−𝑗

(1 − 𝑜𝑢𝑡𝑘(𝑖−1)−𝑗
) ∙ ∑ (𝜇𝑘𝑖−𝑗

∙ 𝑣𝑖−𝑗)𝑗 (16)

where: 𝑘(𝑖−1)−𝑗 and 𝑘𝑖−𝑗 – neurons from adjacent layers (𝑖 - the

number of hidden layers) with 𝑗 neurons in each, 𝑣𝑖−𝑗 – weight of

connection between them.
For the last hidden layer:

𝜇𝑘𝑖−𝑗
= 𝑜𝑢𝑡𝑘𝑖−𝑗

(1 − 𝑜𝑢𝑡𝑘𝑖−𝑗
) ∙ 𝑤𝑗 (17)

where: 𝑘𝑖−𝑗 – neuron from the last hidden layer, 𝑤𝑗 – weight of

connection between 𝑘𝑖−𝑗 and output.

So, using the BES algorithm, we are able to complete the
calculation of the Equation 8 and, accordingly, Equation 7.
Multiple repetition of MAPERS gradually reduces the largest

values of the regulation error throughout the planning horizon. As
a result, we get an array of optimized predicted regulator actions,

including 𝑅𝐴0 (see Fig. 4), which is the action that will be sent for
execution by the next control cycle.

 In the next section, we will consider the implementation of the
previously described multipurpose neuronal network-based
regulator on the example of a thermostat.

4. TEMPERATURE CONTROLLER
BASED ON SELF-TUNING PREDICTIVE ANN

To demonstrate the operation of the specified multipurpose
controller, run it within the task of regulating the temperature of a
particular object. Thus, in Fig. 2, we replace the regulated value
(RA) with the temperature of the regulated object (T), and at the
site of the regulator action (RA), there will be a heater power (P)
that is able to heat the control object. Our control object will be
virtual, so let’s specify the equation according to which it
functions.

𝑇 = 𝑇𝑎 +
𝑃

𝑚
∙ (1 − 𝑒−𝑏∙𝑡) + (𝑇0 − 𝑇𝑎) ∙ 𝑒−𝑏∙𝑡 (18)

where: 𝑇𝑎 – ambient temperature, 𝑚 and 𝑏 – parameters that
make object temperature inertia (taking into account mass and

volume), 𝑡 – time, 𝑇0 – initial temperature. With each change of

heater power (P), time (t) is reset to zero and 𝑇0 equals the
current temperature value (𝑇). In this way, the attenuation
processes are restarted. Set the temperature range in which the

controller should operate from 0 to 50°𝐶. In this range, it shall
provide a regulation accuracy of up to 0.5°𝐶. Since this paper
describes the processes in the simulated environment, to simplify
the demonstration of the principles, the error of temperature
measurement is neglected.

One hidden layer with 30 neurons is sufficient to achieve the
specified accuracy of controller.

4.1. Training of one-step predictive artificial neural network

As a training set, we will use the reaction of the control object
on full power of the heater with consistent cooling.

Fig. 6. Training set of temperature for ANN

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

T
em

pe
ra

tu
re

 [
ºC

]

time [s]

DOI 10.2478/ama-2020-0017 acta mechanica et automatica, vol.14 no.2 (2020)

119

Fig. 7. Training process of ANN

Fig. 6 shows that for half of the training set points (500), the
object is heated at P = 100%, after which the heater switches off
(P = 0) and the object cools the other half of the set to ambient
temperature (𝑇𝑎 = 0°𝐶). Regarding the shape of the curve, it can
be changed, the slope can be reduced and split into a larger
number of time intervals with different heater power. It is not
important for training but may be important for maintaining the
control object.

As can be seen from Fig. 7, the ANN training process is non-
linear. The first 100 epochs reduce the maximum absolute
prediction error for the training set to 2 degrees. And after 1000
epochs, the level of the specified error decreases under 0.5
degrees. This means that the network is able to operate with the
desired accuracy within the specified range. After training, the
regulator is ready to go. Now let’s compare it with a PID controller.

4.2. The result of the operation of the self-tuned temperature
controller

To evaluate the performance of the previously described
controller (with MAPERS), consider it together with a regular PID
controller. Fig. 8 shows the response of the system to the change

in the desired temperature of the control object (𝑇𝑠𝑒𝑡).

Fig. 8. Comparison of adaptive controller operation with classic PID

At the beginning of measurement, 𝑇𝑠𝑒𝑡 is equal to 10 degrees,
after which it switches to 11 degrees and after the transition
processes returns to 10 degrees. So, we can see the response of
regulators to the single step up and down. From what we have
seen, we can conclude that the self-tuning controller is capable of

operating in a given range with a given accuracy (0.5°𝐶), and
even significantly outperforming it (the maximum absolute error for
steady state during measurements was 0.097°𝐶). It is worth
recalling that in modelling, we ignore measurement errors and
focus on the behaviour of regulators under given conditions. Also,
the self-tuning controller performed better than the manual tuned
PID controller in dynamics, avoiding oscillations and large
overshoot. At the same time, the PID controller was more
accurate in steady state. It is possible to increase the accuracy of
the self-tuning controller by increasing the number of hidden layer
neurons and increasing the learning time. But the main advantage
of an adaptive controller, as opposed to the manual tuned PID, is
automatic tuning. With having a training set that characterizes the
behaviour of the control object, we can build a controller with
arbitrary complexity and precision without human intervention.
The given example of a temperature regulator is the most
primitive and clear, therefore, it is necessary to emphasize the
possibility for the described adaptive regulator to operate much
more complex, multidimensional processes (such as autopilot,
industrial control systems, automotive onboard systems, etc.) with
the involvement of many input and output signals. The use of a
classic PID controller in such processes may not be appropriate
and sometimes possible.

5. CONCLUSIONS

The research work aimed to consider a control system that
may be an alternative to classic PID controllers in tasks that
require automation of the controller setup process. A multipurpose
neuronal network-based controller, discussed in this paper, may
be that kind of system. We first looked at its structure and the
main modules that make it up with a detailed description of the
operation of each of these modules and the system as a whole.
After a general analysis, we proceeded to solve a specific
problem, which was the synthesis of an adaptive thermostat. The
synthesized adaptive thermostat showed the set accuracy and
stability of control at the simulation level. The success of this task,
showed the value of the original model, its strengths, weaknesses
and possible ways to improve it. At the same time, it is necessary
to continue studying the capabilities of the described regulator on
the examples of real control processes. It is worth to study the
possible strategies (beyond MAPERS) for optimizing the control
action of the regulator.

REFERENCES

1. Ayomoh M. K. O., Ajala M. T. (2012), Neural Network Modeling of a
Tuned PID Controller, European Journal of Scientific Research, 71,
283–297.

2. Burennikov Y., Kozlov L., Pyliavets V., Piontkevich O. (2017),
Mechatronic Hydraulic Drive with Regulator, Based on Artificial
Neuron Network, IOP Conference Series: Materials Science and
Engineering, 209(1):012071.

3. Du X., Wang J., Jegatheesan V., Shi G. (2018), Dissolved Oxygen
Control in Activated Sludge Process Using a Neural Network-Based
Adaptive PID Algorithm, Applied Sciences, 8(2):261, DOI:
10.3390/app8020261.

4. Elsisi M. (2019), Design of neural network predictive controller
based on imperialist competitive algorithm for automatic voltage
regulator, Neural Computing and Applications, 31, 5017–5027.

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900 1000

M
ax

 a
bs

ol
ut

e
tr

ai
n

er
ro

r
[º

C
]

epochs

9,7

9,9

10,1

10,3

10,5

10,7

10,9

11,1

0 20 40 60 80 100

T
em

pe
ra

tu
re

 [
ºC

]

time [s]

MAPERS

PID

http://ceur-ws.org/Vol-2468/p8.pdf
https://www.researchgate.net/publication/321542213_Proceedings_of_the_International_Conference_on_Data_Engineering_and_Communication_Technology_ICDECT_2016_Volume_1

Oleksiy Bondar DOI 10.2478/ama-2020-0017
Predictive Neural Network in Multipurpose Self-Tuning Controller

120

5. Han G., Fu W., Wang W., Wu Z. (2017), The Lateral Tracking
Control for the Intelligent Veicle Based on Adaptive PID Neural
Network, Sensors, 17(6):1244, DOI: 10.3390/s17061244.

6. Heaton J. (2008), Introduction to Neural Networks with Java, Heaton
Research Inc., St. Louis.

7. Hernández-Alvarado R., García-Valdovinos L.G., Salgado-
Jiménez T., Gómez-Espinosa A., Fonseca-Navarro F. (2016),
Neural Network-Based Self-Tuning PID Control for Underwater
Vehicles, Sensors, 16(9), 1429, https://doi.org/10.3390/s16091429.

8. https://stackoverflow.com/questions/10732027/fast-sigmoid-algorithm
(08.02.2018)

9. Liu B., Hussami N., Shrikumar A., Shimko T., Bhate S., Longwell
S., Montgomery S., Kundaje A. (2019), A multi-modal neural
network for learning cis and trans regulation of stress response in
yeast, arXiv:1908.09426.

10. Ma H., Lang S., Wellßow W. (2018) Fallback Solution for a Low-
Voltage Regulator Control using Artificial Neural Networks, CIRED
2018 Ljubljana WS, http://dx.doi.org/10.34890/413.

11. MacLean D. (2019), A convolutional neural network for predicting
transcriptional regulators of genes in Arabidopsis transcriptome data
reveals classification based on positive regulatory interactions,
bioRxiv 618926.

12. Pirabakaran K., Becerra V.M. (2002), PID autotuning using neural
networks and model reference adaptive control, IFAC Proceedings,
35, 451–456.

13. Wica M., Witkowsk M., Szumiec A., Ziebura T. (2019), Weather
forecasting system with the use of neural network and
backpropagation algorithm, Proceedings of the International
Conference on Data Engineering and Communication Technology,
2468, 37–41, DOI: 10.1007/978-981-10-1675-2_62.

14. Zaman M.H.M., Marzuki M.M., Hannan M.A., Hussain A. (2018),
Neural Network Based Prediction of Stable Equivalent Series
Resistance in Voltage Regulator Characterization, Bulletin of
Electrical Engineering and Informatics, 7, 134–142, DOI:
10.11591/eei.v7i1.857.

15. Zhang Z., Ma C., Zhu R. (2016), Self-Tuning Fully-Connected PID
Neural Network System for Distributed Temperature Sensing and
Control of Instrument with Multi-Modules, Sensors, 16(10):1709, DOI:
10.3390/s16101709.

16. Zhao D., Yang T., Ou H., Zhou H. (2018), Autopilot Design for
Unmanned Surface Vehicle based on CNN and ACO, International
Journal of Computers Communications & Control, 13(3), 429–439,
DOI: 10.15837/ijccc.2018.3.3236.

https://doi.org/10.3390/s16091429
https://arxiv.org/abs/1908.09426
https://arxiv.org/abs/1908.09426
https://arxiv.org/abs/1908.09426
https://www.sciencedirect.com/science/journal/14746670
http://ceur-ws.org/Vol-2468/p8.pdf
http://ceur-ws.org/Vol-2468/p8.pdf
http://ceur-ws.org/Vol-2468/p8.pdf
https://www.researchgate.net/publication/321542213_Proceedings_of_the_International_Conference_on_Data_Engineering_and_Communication_Technology_ICDECT_2016_Volume_1
https://www.researchgate.net/publication/321542213_Proceedings_of_the_International_Conference_on_Data_Engineering_and_Communication_Technology_ICDECT_2016_Volume_1

