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Abstract: A very important problem in designing of controlling systems is to choose the right type of architecture of controller.  
And it is always a compromise between accuracy, difficulty in setting up, technical complexity and cost, expandability, flexibility  
and so on.  In this paper, multipurpose adaptive controller with implementation of artificial neural network is offered as an answer  
to a wide range of tasks related to regulation. The effectiveness of the approach is demonstrated by the example of an adaptive 
thermostat. It also compares its capabilities with those of classic PID controller. The core of this approach is the use of an artificial 
neural network capable of predicting the behaviour of controlled object within its known range of parameters. Since such a network, 
being trained, is a model of a regulated system with arbitrary precision, it can be analysed to make optimal management decisions  
at the moment or in a number of steps. Network learning algorithm is backpropagation and its modified version is used to analyse  
an already trained network in order to find the optimal solution for the regulator. Software implementation, such as graphical user 
interface, routines related to neural network and many other, is done using Java programming language and Processing open-source 
integrated development environment.  

Keywords: Artificial neural network, adaptive regulator, backpropagation algorithm, system modelling 

1. INTRODUCTION 

Nowadays, the use of artificial neural networks in control 
processes and other activities is a very popular area of research. 
And this is understandable, since these structures are a good tool 
in the modelling of complex systems, for which it is difficult to find 
a simple mathematical solution. It should also be remembered 
that artificial neural networks are capable of providing high quality 
data processing even in the conditions of their incompleteness. 
Such a predicting model is successfully being using for weather 
forecasting in short term for some localities (Wica et al., 2019). It 
can also be useful to provide neural classification mechanism in 
genetics researches (Liu et al., 2019; MacLean, 2019). The usage 
of artificial neural network (hereinafter referred to as ANN) is a 
reasonable solution for power flow regulators (Ma et al., 2018). 
Also, ANN can be used as a tool for detecting stable equivalent 
series resistance (ESR) in voltage regulator characterization 
(Zaman et al., 2018), in mechatronic hydraulic drive regulation 
(Burennikov et al., 2017) or autopilot (Zhao et al., 2018). However, 
researchers are particularly curious about the possibility of using 
artificial neural networks in the automatic tuning of PID regulators 
(Ayomoh and Ajala, 2012; Hernández-Alvarado et al., 2016; 
Pirabakaran and Becerra, 2002; Zhang et al., 2016; Du et al. 
2018; Han et al., 2017). The method proposed in this paper 
excludes the PID section from the controller system. As will be 
shown, a trained neural network with a multi-step error estimation 
module is sufficient for high quality control of a wide range of 
systems providing flexible controls. Moreover, the network does 
not require any specific or detailed data, rather accurate system 
data in the regulatory range. To demonstrate the principle 

operation of the multipurpose controller as thermostat, a software 
model of the solid body temperature under the influence of 
external factors was created. Such an example is simple to 
understand and easily portable to a real thermostat or to another 
type of system. For the software implementation, Processing 
integrated development environment (IDE) was selected, which 
uses a Java programming language. It speeds up and facilitates 
both writing and debugging of programs for which it is important to 
have as many graphical evaluation options as possible. 

2. DESCRIPTION OF MULTIPURPOSE NEURONAL 
NETWORK-BASED CONTROLLER 

In order to understand the principle of operation of a 
multipurpose adaptive controller, it is necessary to consider its 
work in stages with a detailed analysis of the work of each 
element. We list these stages. Primary training of predictive ANN, 
during which the regulator acquires the ability to assess the state 
of regulated object in the future, based on the state of that object 
at the present moment. Further, the already trained ANN is 
embedded in a multi-step planning mechanism, where, thanks to 
the neural network's ability to approximate functions, we obtain a 
model of the object's behaviour depending on the actions of the 
controller itself on a certain number of steps forward. The 
predicted sequence of states of the control object over time is 
used to estimate the error relative to the desired control result for 
each of these states. Depending on the approach chosen in the 
assessment, these error values are used to optimize the 
controller's actions in the appropriate way. First of all, we will look 
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at the core of the whole system – one-step predictive artificial 
neural network. 

2.1. One-step predictive artificial neural network 

The module is so called Feedforward Backpropagation Neural 
Network. Quite traditional architecture of network with neurons 
(knots) grouped into layers (see Fig.1). There are three types of 
layers: input, hidden, and output. The input layer is a set of 
corresponding signals that the module must process to obtain the 
output signal. In this case, the following signals are: RV – 
regulated value, RA – regulator action. Regulated value is the 
parameter that should be controlled such as temperature (for 
thermostats), speed or torque (for motor controller), distance, 
pressure or voltage and so on. Regulator action is any relevant 
action that affects a regulated value such as change of voltage, 
PWM, power, or any other parameter that the regulator may 
manipulate during control. 

RV RA

1-1k 1-2k 1-jk

2-1k 2-2k 2-jk

i-1k i-2k i-jk

RV+

RV RA

RV+

 
Fig. 1. The scheme of one-step predictive ANN 

Hidden layers can contain a certain number of neurons in 
each layer and consist of a certain number of layers. The number 
of hidden layers depends on the complexity of the behaviour of 
the control object, but in most cases, one hidden layer is sufficient 
(Heaton, 2008). The number of neurons in each layer is defined 
as a balance between the precision with which the neural network 
as a model is able to reproduce the behaviour of the system on 
which it is trained and the complexity of implementing such a 
system in a software sense. Each additional neuron in the layer 
increases the accuracy with which the system can make 
predictions as a whole, but it also increases the computational 
power requirements of the equipment on which this network must 
operate. For each neuron of the hidden or output layers, the 
internal state of the neuron is first calculated based on the signals 
coming from the previous layer. As it was stated, the prediction 
module trains with the backpropagation algorithm, but there are 
no restrictions on using other algorithms such as genetic or 
imperialist competitive or others (Elsisi, 2019). Equation 1 shows 
how to calculate the internal state of the hidden or output neuron 
in layer with 𝑖 neurons and previous layer with 𝑙 neurons. All other 
neurons in this layer are calculated similarly by replacing the 

corresponding index 𝑖 with the desired one. 

𝑠𝑡𝑎𝑡𝑒𝑘𝑖
= (∑ (𝑤𝑙𝑖 ∙ 𝑜𝑢𝑡𝑙)𝑙 ) + 𝑏𝑘𝑖

  (1)                         

where: 𝑠𝑡𝑎𝑡𝑒𝑘𝑖
– internal state of neuron in a row of 1 to 𝑖 of 

hidden or output layer, 𝑙 – the number of neurons in the previous 

layer, 𝑤𝑙𝑖  – the weight of the connection between the calculated 

neuron and the output of neuron in a row of 1 to 𝑙 from the 
previous layer (𝑜𝑢𝑡𝑙), 𝑏𝑘𝑖

 – offset of the calculated neuron, 

makes it possible for the internal state of the neuron not to be 0 
when the input signals are 0. After that, the output of the neuron is 
calculated. To do this, the resulting internal state of the neuron 
must be passed through the activation function. There are 
different variants of the activation function, but in this paper, a 
linear activation function is used for the output neuron, and a fast 
sigmoid (https://stackoverflow.com/questions/10732027/fast-
sigmoid-algorithm) for the hidden layers. The linear activation 
function simply transmits to the output of the neuron its internal 
state and allows the output value of the neuron to not be limited 
by any asymptotes in its range. Which is useful for a network 
whose output values may reach values that other activation 
functions do not allow. The sigmoid, as a function of activating the 
hidden layers, on the contrary, limits the output values in the 
range from 0 to 1 and provides nonlinearity in the operation of the 
network. Nonlinearity is necessary where the behaviour of the 
system to be simulated cannot be reduced to the sum of linear 
functions, which is any more or less complex system. The fast 
sigmoid (see Eq. 2) is close to the original but significantly 
reduces the time to calculate the activation function since it does 
not require a floating point exponent. 

𝑜𝑢𝑡𝑘𝑖
= {

0.5

1+𝑠𝑡𝑎𝑡𝑒𝑘𝑖
2  ,   𝑤ℎ𝑒𝑛   𝑠𝑡𝑎𝑡𝑒𝑘𝑖

< 0

1 −
0.5

1+𝑠𝑡𝑎𝑡𝑒𝑘𝑖
2  ,   𝑤ℎ𝑒𝑛   𝑠𝑡𝑎𝑡𝑒𝑘𝑖

≥ 0
  (2) 

where: 𝑜𝑢𝑡𝑘𝑖
 – the output value of the neuron in a row of 1 to 𝑖 of 

some hidden layer (from 1 to 𝑗, see Fig.1).  
The output layer of this model consists of one neuron and 

forms the final result of the network. The output 𝑅𝑉+ itself is the 
prediction of a regulated value (RV) on the next step of regulation. 
It is worth noting that such a network may also contain some 
additional inputs and outputs, which on the one hand allow to 
expand the number of parameters being monitored for regulation, 
and on the other hand create additional opportunities for 
optimizing the controller's actions. But it should also be 
remembered that increasing the number of inputs and outputs of 
the network requires an increase in its complexity, and thus, the 
requirements for hardware to process it (Heaton, 2008). 

2.2. Multi-step planning mechanism 

After considering the one-step predictive ANN as a basic 
element of the planning mechanism, we move on to the multi-step 
mechanism as a whole. 

As can be seen from Fig. 2, the mentioned mechanism is 
composed as a sequence of one-step forecasts made using the 
previously described neural network. Moreover, since the trained 
network is capable of making predictions for the original managed 
object within the range of values in which it was trained, only one 
forecasting network is needed for any long-range forecast in time. 
The first step in forecasting is based on the current data of 
regulated value (𝑅𝑉0) and regulator action (𝑅𝐴0). After this, the 
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forecast for the first adjustment step 𝑅𝑉1 becomes the input value 

for the prediction of the next step 𝑅𝑉2, and so on, down to some 

step 𝑛 which limits the planning horizon. Increasing the planning 
horizon on one hand improves the dynamic characteristics of the 
controller, such as stability and the absence of overshoots in 
operation, on the other hand, it increases the time to calculate all 
the steps. Regarding the values of future control actions 

(𝑅𝐴1…𝑅𝐴𝑛−1), prior to optimization, they may be equal to the 
current control or may be random in a certain range. Further, all 
the results predicted at each step are sent for estimation of a 
regulation error in the corresponding module.  

One-step 

predictive ANN

RV0 RA 0

RV 1

One-step 

predictive ANN

RA 1

RV 2

One-step 

predictive ANN

RA n-1

RV n

RVn-1

Error 

estimation 

module

Er

RVset

 
Fig. 2. The scheme of multi-step planning mechanism 

2.3. Error estimation module  

As the proposed multi-step controller must be able to make 
current decisions based on certain predictions of both behaviour 
of the system it manages and its actions, it must also adequately 
assess how its actions are approaching in the future achievement 
of the goal, avoiding oscillations and overshoots. This function is 
performed by the error estimation module. Taking into account the 

target value to be reached by the control object (𝑅𝑉𝑠𝑒𝑡), the 
controller calculates an error for each predicted step. The 
equation to calculate the regulation error in the first step of 
forecasting is: 

𝐸𝑟1 =
(𝑅𝑉1−𝑅𝑉𝑠𝑒𝑡)2

2
 (3) 

where: 𝐸𝑟1 – regulation error in the first step of forecasting. 
It should also be remembered that each new step of the 

prediction is based on the previous one, and the error of the 
neural network modelling of the source system will accumulate. 
Therefore, the regulator should not equally evaluate the result at 
each step. Equation 4 shows how it calculates the values of the 
regulation errors in the range from 2nd to n-th steps. 

𝐸𝑟𝑛 =
(𝑅𝑉𝑛−𝑅𝑉𝑠𝑒𝑡)2

2∙(𝑛−1)∙𝑑
 (4) 

where: 𝐸𝑟𝑛 – regulation error in the n-th step of forecasting,  

n – step number, d – initial depreciation, 𝑅𝑉𝑛 – regulated value in 
the n-th step of forecasting. As we can see, from the second step, 
the significance of each subsequent regulation error decreases in 
arithmetic progression. The initial depreciation is the factor in how 
many times the second forecast is less important for the regulator 
than the first one. This approach helps to increase the stability of 
the regulator and indicate that the first step is the most important 
to control because it influences further events by domino effect. 

3. THE CONTROL ALGORITHM 

After a schematic description of the proposed regulator, we 
proceed to the disclosure of the algorithm of its operation. First of 
all, let’s say that the given controller can work on different 
algorithms of optimization of control action. This paper describes 
one such algorithm. A common feature of such algorithms is their 
similarity to the backpropagation method in neural network 
training. They are also iterative and use a gradient descent 
method with dividing into the forward and backward pass. But if 
backpropagation in a step-by-step training changes the 
parameters of the neural network, then the control algorithms 
below do not change the network itself, but use it to detect a 
correlation between the action of the controller and the error of 
regulation. Mathematically, the optimization step in general is 
shown in Equation 5. 

𝑅𝐴′ = 𝑅𝐴 − 𝜆 ∙
𝜕𝐸𝑟

𝜕𝑅𝐴
 (5) 

where: 𝑅𝐴′ – regulator action after one optimisation step, 𝜆 – 

optimization rate, 𝐸𝑟 – predicted regulation error (depends on the 
optimization strategy). Thus, at each step of the optimization of 
the control action, it changes by a value proportional to the 
instantaneous speed of change of the predicted regulation error 

with the change of the regulatory action. Moreover, 𝜆 should be 

small enough to ensure the smoothness and accuracy of the 
process, but not too small, as this will require a large number of 

iterations for a successful result. Further work is to calculate  
𝜕𝐸𝑟

𝜕𝑅𝐴
. 

According to the chain rule, this task can be divided into two 
simpler ones (see Eq. 6). 

𝜕𝐸𝑟

𝜕𝑅𝐴
=

𝜕𝐸𝑟

𝜕𝑅𝑉
∙

𝜕𝑅𝑉

𝜕𝑅𝐴
 (6) 

where: RV – predicted regulated value. So, calculation of 
𝜕𝐸𝑟

𝜕𝑅𝑉
 

allows the error estimation module. And the forecasting network 

allows to calculate 
𝜕𝑅𝑉

𝜕𝑅𝐴
. But for this, we need to decide on a 

strategy by which we will evaluate regulatory errors and optimize 
the regulation action. So, let’s describe the strategy of 
optimization of the maximum predicted regulation error. 

3.1. Maximum Predicted Error Reduction Strategy (MAPERS) 

The essence of the Maximum Predicted Error Reduction 
Strategy (hereinafter referred to as MAPERS) is to look for that 
step in the planning mechanism that predicts more regulation 
error than others, then change the planned action in this step  
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to the side, which should reduce the error in that step (see 
Equation 5).  

As can be seen from Fig. 3, in each forward pass of the 
optimization cycle, the multi-step planning mechanism generates 
a chain of forecasts from 𝑅𝑉1 to 𝑅𝑉𝑛, which together with 

𝑅𝑉𝑠𝑒𝑡  go to the input of the error estimation module. Here, the 
error of regulation of each of the predicted steps is calculated 
separately by Equations (3) and (4), after which the step with the 

maximum error is selected from all the steps (𝐸𝑟𝑚𝑎𝑥). The 

𝐸𝑟𝑚𝑎𝑥  computation ends the forward pass and the back pass 
begins, the purpose of which is to change the step with the 

predicted 𝐸𝑟𝑚𝑎𝑥  to reduce it. The way of back pass is shown in 

the Fig. 4 (arrow pointing from 𝐸𝑟𝑚𝑎𝑥   to  𝑅𝐴𝑚𝑎𝑥). 

Er max

RV1 RVn

RV
(𝑅𝑉1 −𝑅𝑉𝑠𝑒𝑡 )

2

2
 

(𝑅𝑉2 − 𝑅𝑉𝑠𝑒𝑡 )
2

2 ∙ 𝑑
 

(𝑅𝑉𝑛 − 𝑅𝑉𝑠𝑒𝑡 )
2

2 ∙ (𝑛 − 1) ∙ 𝑑
 

RV2

MAX

set

 
Fig. 3. Schematic diagram of the error estimation module for the 

Maximum Predicted Error Reduction Strategy (forward pass) 
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Fig. 4. Schematic diagram of the way of back pass for MAPERS 

Therefore, Equation 5 for MAPERS can be rewritten according 
to the Fig. 4 as: 

𝑅𝐴′
𝑚𝑎𝑥 = 𝑅𝐴𝑚𝑎𝑥 − 𝜆 ∙

𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝐴𝑚𝑎𝑥
 (7) 

where: 𝑅𝐴𝑚𝑎𝑥 – regulator action in step with maximum value of 
predicted regulation error.    

We can also rewrite Equation 6 for MAPERS as: 

𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝐴𝑚𝑎𝑥
=

𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝑉𝑚𝑎𝑥
∙

𝜕𝑅𝑉𝑚𝑎𝑥

𝜕𝑅𝐴𝑚𝑎𝑥
 (8) 

where: 𝑅𝑉𝑚𝑎𝑥  – predicted regulated value in step with maximum 
value of predicted regulation error. 

To calculate  
𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝑉𝑚𝑎𝑥

, we need to refer to Equations 3 and 4, 

mentioned earlier. After calculations, we get the corresponding 
derivatives: 

𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝑉𝑚𝑎𝑥
= {

𝑅𝑉1 − 𝑅𝑉𝑠𝑒𝑡 , 𝑖𝑓 𝐸𝑟𝑚𝑎𝑥 = 𝐸𝑟1
𝑅𝑉𝑛−𝑅𝑉𝑠𝑒𝑡

(𝑛−1)∙𝑑
, 𝑖𝑓 𝐸𝑟𝑚𝑎𝑥 = 𝐸𝑟𝑛  𝑎𝑛𝑑 𝑛 > 1

 (9) 

Now to calculate  
𝜕𝑅𝑉𝑚𝑎𝑥

𝜕𝑅𝐴𝑚𝑎𝑥

 , we have to dive into the work of the 

one-step predictive ANN with the algorithm of backpropagation of 
the effect of the signal. Since this algorithm is involved in the 
regulator strategy, we are considering that it is worth exploring it in 
detail. 

3.2. Backpropagation of the Effect of the Signal(BES) 

Having a trained neural network, we can use it to determine 
the direction and value in which the output parameter will change 
when the input is changed. The algorithm of Backpropagation of 
the Effect of the Signal (hereinafter referred to as BES) resembles 
a backpropagation training algorithm but works without changing 

the network settings. Instead, it allows to calculate 
𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
 for the 

specific status of the inputs and outputs of this network. And that 
is just what we have left to do to complete Equation 8. Refer to 
Fig. 1 for an explanation of the BES algorithm, but somewhat 
simplify the network structure. Let’s leave one input (no matter 
which one) and one output. Hidden neurons are located in two 
layers, two in each. This network configuration makes it possible 
to trace possible signal propagation options and can be easily 
scaled to any number of layers with any number of neurons in 
each. 

IN

1-1k 1-2k

2-1k 2-2k

OUT

IN

OUT

f1 f2

v1 v2

w1

w2 w3

w4

 
Fig. 5. The scheme of simplified one-step predictive ANN in BES 

algorithm 

First of all, it should be understood that this scheme provides 
for three types of connections between elements. Namely, input-
hidden neuron, hidden neuron-hidden neuron and hidden neuron-
output neuron. Therefore, a description of these three types of 
communication enables a general description of the scheme. For 
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simplicity, each type of communication has its own letter in the 
scheme: f for input-neuron, w for neuron-neuron, v for neuron-
output. Although they correspond to the weights for Equation 1. 
The BES algorithm starts with a forward pass through the 
network, in order to establish all the internal states and outputs of 
its nodes. After that, the back passage begins, where the effect of 
network input on the output must be calculated. Using a chain 
rule, find the effect on the output signal of a neuron from the last 
hidden layer, for example, 𝑘2−1: 

𝜕𝑜𝑢𝑡

𝜕𝑠𝑡𝑎𝑡𝑒𝑘2−1

=
𝜕𝑜𝑢𝑡

𝜕𝑜𝑢𝑡𝑘2−1

∙
𝜕𝑜𝑢𝑡𝑘2−1

𝜕𝑠𝑡𝑎𝑡𝑒𝑘2−1

= 𝜇𝑘2−1
 (10) 

where: 𝜇𝑘2−1
– effect of the neuron 𝑘2−1 state on the output 

signal. As for neuron 𝑘2−2, its effect is calculated in the same 
way. Remembering Equations (1) and (2), we unpack the 
derivatives.   

𝜇𝑘2−1
= 𝑜𝑢𝑡𝑘2−1

(1 − 𝑜𝑢𝑡𝑘2−1
) ∙ 𝑣1  (11) 

As we go further, we come across a neuron-neuron type 
connection, so we write down an equation describing the effect of 
neuron 𝑘1−2 on the output signal (with 𝑘1−1 everything is the 
same). 

𝜕𝑜𝑢𝑡

𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−2

= 𝑜𝑢𝑡𝑘1−2
(1 − 𝑜𝑢𝑡𝑘1−2

) ∙ (𝜇𝑘2−1
∙ 𝑤3 + 𝜇𝑘2−2

∙ 𝑤4)(12) 

Finally, we pack the influence of the neurons of the first 
hidden layer and write the equation for the input signal. 

𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
=

𝜕𝑜𝑢𝑡

𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−1

∙
𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−1

𝜕𝑖𝑛
+

𝜕𝑜𝑢𝑡

𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−2

∙
𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−2

𝜕𝑖𝑛
 (13) 

Solving derivatives, we have: 

𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
= 𝜇𝑘1−1

∙ 𝑓1 + 𝜇𝑘1−2
∙ 𝑓2 (14) 

After solving this problem in a simplified version, we can 

generalize its solution to allow search of  
𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
  in a network with 

an arbitrary number of hidden layers and with an arbitrary number 
of neurons in each (but in all hidden layers identical). 

For the input of the neural network (see Fig. 1), the effect 
equation will be: 

𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
= ∑ (𝜇𝑘1−𝑗

∙ 𝑓𝑗)𝑗  (15) 

where: 𝜇𝑘1−𝑗
 – effect on output of the neuron of the first hidden 

layer which makes neuron in range from 1 to 𝑗, 𝑓𝑗 – weight of the 

connection between 𝑘1−𝑗  and input. 

For hidden layers (except the last): 

𝜇𝑘(𝑖−1)−𝑗
= 𝑜𝑢𝑡𝑘(𝑖−1)−𝑗

(1 − 𝑜𝑢𝑡𝑘(𝑖−1)−𝑗
) ∙ ∑ (𝜇𝑘𝑖−𝑗

∙ 𝑣𝑖−𝑗)𝑗  (16) 

where: 𝑘(𝑖−1)−𝑗 and 𝑘𝑖−𝑗  – neurons from adjacent layers (𝑖 - the 

number of hidden layers) with 𝑗 neurons in each, 𝑣𝑖−𝑗 – weight of 

connection between them. 
For the last hidden layer: 

𝜇𝑘𝑖−𝑗
= 𝑜𝑢𝑡𝑘𝑖−𝑗

(1 − 𝑜𝑢𝑡𝑘𝑖−𝑗
) ∙ 𝑤𝑗  (17) 

where: 𝑘𝑖−𝑗  – neuron from the last hidden layer, 𝑤𝑗  – weight of 

connection between 𝑘𝑖−𝑗  and output. 

So, using the BES algorithm, we are able to complete the 
calculation of the Equation 8 and, accordingly, Equation 7. 
Multiple repetition of MAPERS gradually reduces the largest 

values of the regulation error throughout the planning horizon. As 
a result, we get an array of optimized predicted regulator actions, 

including 𝑅𝐴0 (see Fig. 4), which is the action that will be sent for 
execution by the next control cycle. 

 In the next section, we will consider the implementation of the 
previously described multipurpose neuronal network-based 
regulator on the example of a thermostat. 

4. TEMPERATURE CONTROLLER  
BASED ON SELF-TUNING PREDICTIVE ANN 

To demonstrate the operation of the specified multipurpose 
controller, run it within the task of regulating the temperature of a 
particular object. Thus, in Fig. 2, we replace the regulated value 
(RA) with the temperature of the regulated object (T), and at the 
site of the regulator action (RA), there will be a heater power (P) 
that is able to heat the control object. Our control object will be 
virtual, so let’s specify the equation according to which it 
functions. 

𝑇 = 𝑇𝑎 +
𝑃

𝑚
∙ (1 − 𝑒−𝑏∙𝑡) + (𝑇0 − 𝑇𝑎) ∙ 𝑒−𝑏∙𝑡  (18) 

where: 𝑇𝑎  – ambient temperature, 𝑚 and 𝑏 – parameters that 
make object temperature inertia (taking into account mass and 

volume), 𝑡 – time, 𝑇0 –  initial temperature. With each change of 

heater power (P), time (t) is reset to zero and 𝑇0 equals the 
current temperature value (𝑇). In this way, the attenuation 
processes are restarted. Set the temperature range in which the 

controller should operate from 0 to 50°𝐶. In this range, it shall 
provide a regulation accuracy of up to 0.5°𝐶. Since this paper 
describes the processes in the simulated environment, to simplify 
the demonstration of the principles, the error of temperature 
measurement is neglected. 

One hidden layer with 30 neurons is sufficient to achieve the 
specified accuracy of controller.  

4.1. Training of one-step predictive artificial neural network 

As a training set, we will use the reaction of the control object 
on full power of the heater with consistent cooling.  

 

Fig. 6. Training set of temperature for ANN 
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Fig. 7. Training process of ANN 

Fig. 6 shows that for half of the training set points (500), the 
object is heated at P = 100%, after which the heater switches off 
(P = 0) and the object cools the other half of the set to ambient 
temperature (𝑇𝑎 = 0°𝐶). Regarding the shape of the curve, it can 
be changed, the slope can be reduced and split into a larger 
number of time intervals with different heater power. It is not 
important for training but may be important for maintaining the 
control object. 

As can be seen from Fig. 7, the ANN training process is non-
linear. The first 100 epochs reduce the maximum absolute 
prediction error for the training set to 2 degrees. And after 1000 
epochs, the level of the specified error decreases under 0.5 
degrees. This means that the network is able to operate with the 
desired accuracy within the specified range. After training, the 
regulator is ready to go. Now let’s compare it with a PID controller. 

4.2. The result of the operation of the self-tuned temperature 
controller 

To evaluate the performance of the previously described 
controller (with MAPERS), consider it together with a regular PID 
controller. Fig. 8 shows the response of the system to the change 

in the desired temperature of the control object (𝑇𝑠𝑒𝑡).  

 
Fig. 8. Comparison of adaptive controller operation with classic PID 

At the beginning of measurement, 𝑇𝑠𝑒𝑡 is equal to 10 degrees, 
after which it switches to 11 degrees and after the transition 
processes returns to 10 degrees. So, we can see the response of 
regulators to the single step up and down. From what we have 
seen, we can conclude that the self-tuning controller is capable of 

operating in a given range with a given accuracy (0.5°𝐶), and 
even significantly outperforming it (the maximum absolute error for 
steady state during measurements was 0.097°𝐶). It is worth 
recalling that in modelling, we ignore measurement errors and 
focus on the behaviour of regulators under given conditions. Also, 
the self-tuning controller performed better than the manual tuned 
PID controller in dynamics, avoiding oscillations and large 
overshoot. At the same time, the PID controller was more 
accurate in steady state. It is possible to increase the accuracy of 
the self-tuning controller by increasing the number of hidden layer 
neurons and increasing the learning time. But the main advantage 
of an adaptive controller, as opposed to the manual tuned PID, is 
automatic tuning. With having a training set that characterizes the 
behaviour of the control object, we can build a controller with 
arbitrary complexity and precision without human intervention. 
The given example of a temperature regulator is the most 
primitive and clear, therefore, it is necessary to emphasize the 
possibility for the described adaptive regulator to operate much 
more complex, multidimensional processes (such as autopilot, 
industrial control systems, automotive onboard systems, etc.) with 
the involvement of many input and output signals. The use of a 
classic PID controller in such processes may not be appropriate 
and sometimes possible. 

5. CONCLUSIONS 

The research work aimed to consider a control system that 
may be an alternative to classic PID controllers in tasks that 
require automation of the controller setup process. A multipurpose 
neuronal network-based controller, discussed in this paper, may 
be that kind of system. We first looked at its structure and the 
main modules that make it up with a detailed description of the 
operation of each of these modules and the system as a whole. 
After a general analysis, we proceeded to solve a specific 
problem, which was the synthesis of an adaptive thermostat. The 
synthesized adaptive thermostat showed the set accuracy and 
stability of control at the simulation level. The success of this task, 
showed the value of the original model, its strengths, weaknesses 
and possible ways to improve it. At the same time, it is necessary 
to continue studying the capabilities of the described regulator on 
the examples of real control processes. It is worth to study the 
possible strategies (beyond MAPERS) for optimizing the control 
action of the regulator. 
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