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Abstract: The aim of this study is to develop the numerical–analytical model of frictional heating in a pad/disc system during braking  
including the pressure fluctuations, engendered by the pump in an anti-skid braking operation. For this purpose, the problem of motion  
and the one-dimensional thermal problem of friction for a semi-space/semi-space tribosystem were formulated and solved. Obtained  
solutions allow to calculate temperature distribution on the contact surface and inside the friction elements. Thermal analysis  
was performed for a metal–ceramic pad and a cast iron disc during one-time braking including the time-dependent, oscillating pressure. 
The influence of amplitude of pressure fluctuations on the temperature variations was investigated, especially on the value of maximum 
temperature achieved during braking. 
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1. INTRODUCTION 

Braking operation is performed by proper clamp of friction 
pads to the rotating disc. Therefore, the nominal value and varia-
tions of pressure determine the effectiveness of the friction pro-
cess that occurs. In the case of severe, heavy-loaded braking 
processes, the spatial distribution of pressure on the contact 
surface can be assumed as uniform (Yevtushenko and Kuciej, 
2012; Matysiak and Yevtushenko, 2001). However, the time pro-
file of contact pressure can have various shapes, which has signif-
icant influence on the process. 

Most known solutions for thermal friction problems have been 
obtained for a classic case of braking with constant deceleration, 
i.e. assuming that pressure is invariable in time (Fazekas, 1953; 
Belhocine and Bouchetara, 2012; Talati and Jalalifar, 2009; Nosko 
et al., 2012). More precise models use an exponential function to 
describe the increase of contact pressure at the beginning of 
braking to nominal value (Topczewska, 2018; Yevtushenko et al., 
1999; Matysiak et al., 2002) or its simplified form – linear growth 
of pressure – and maintain the achieved nominal value to the end 
of braking (Topczewska, 2018; Yevtushenko and Grześ, 2015; 
Yevtushenko et al., 2019). In the article Topczewska (2018), the 
evolution of temperature on friction surface was found in a closed 
analytical form for a classic semi-space/semi-space system with 
regard to the time profiles of specific friction power corresponding 
to the exponential and linear increase of pressure. Another possi-
ble pressure variation during braking was taken into account 
indirectly by applying different profiles of specific friction power 
during single braking (Yevtushenko et al., 2019). In the above-
mentioned article, the analytical solutions of one-dimensional heat 
conduction problem formulated for semi-space/semi-space sys-
tem were found. 

All of the above-mentioned problems concerned processes 
with monotonically increasing pressure during braking. However, 
the growth of contact pressure may also be accompanied by its 
fluctuations caused by anti-slip regulation, anti-lock braking sys-
tem or pulse braking mode. Thermal problems of friction contact 

pressure fluctuations during braking were formulated and solved 
for a strip/semi-space (Yevtushenko et al., 2010) and semi-
space/strip/semi-space tribosystems (Kuciej, 2011). In the latter 
articles, mainly, the influence of the time of pressure increase to 
nominal value and heat transfer through a contact surface at the 
temperature level were investigated. 

In this paper, the distribution of temperature in the pad/disc 
system was found during braking with an exponential growth of 
pressure and its fluctuations. For this purpose, the initial problem 
of motion and the one-dimensional boundary value problem of 
heat conduction were considered. Performed numerical analysis 
allowed to establish the effect of amplitude of pressure oscillation 
on the contact surface during braking on the temperature distribu-
tion.  

2. STATEMENT OF THE PROBLEM 

 One-time, rapid braking process of a pad/brake disc system 
was considered. The operating principle of this type of brake 
system is based on the friction pads’ clamp on the surface of the 
rotating disc. As a result of friction, heat is generated on the 
contact surfaces. Investigations of temperature distribution in a 
heated friction element during braking at high sliding speed 
showed the following (Yevtushenko and Kuciej, 2012; Balakin and 
Sergienko, 1999): 
1. Almost all frictional heat is absorbed by the pads and disc in 

an axial direction, i.e. perpendicular to the friction surface. 
2. Significant gradients of temperature are present only at a 

short distance from the contact surface, the so-called effective 
depth of heat penetration (Chichinadze et al., 2010), which is 
much smaller than the actual thickness of friction elements.  

3. The effect of convective heat exchange with the environment 
and wear are negligible (Yevtushenko et al., 2020; 
Topczewska et al., 2020). So, the whole energy generated 
during braking is converted into heat. 
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4. Thermal resistance on the interface of pad and disc is 
inconsiderable. So, thermal contact is perfect. 

 In order to determine the temperature distribution in friction 
elements, proper initial problem of motion and thermal problem of 
friction were formulated on the basis of the above assumptions 
(1–4). 

3. THE INITIAL PROBLEM OF MOTION 

The initial problem of motion for a pad/disc system during sin-
gle braking from initial sliding velocity of the disc 𝑉0 to the stand-
still position at 𝑡𝑠 has the following form (Kuciej, 2012): 

2𝑊0𝑉0
−2 𝑑

𝑑𝑡
𝑉(𝑡) = −𝑓𝑝(𝑡)𝐴𝑘, 0 ≤ 𝑡 ≤ 𝑡𝑠 , (1) 

𝑉(0) = 𝑉0,  (2) 

where 𝑊0 is the initial kinetic energy, 𝑓 the coefficient of friction, 
𝐴𝑘 = 2𝜋(𝑟𝑒

2 − 𝑟𝑖
2) the nominal contact surface, 𝑟𝑒 , 𝑟𝑖 the external 

and internal radii of a single friction surface and 𝑝(𝑡) is the con-
tact pressure. Problem of motion (1), (2) can be written in the 
dimensionless form: 

𝜏𝑠
0 𝑑

𝑑𝜏
𝑉∗(𝜏) = −𝑝∗(𝜏), 0 ≤ 𝜏 ≤ 𝜏𝑠, (3) 

𝑉∗(0) = 1,  (4) 

where the introduced dimensionless variables and parameters 
are: 

𝜏 =
𝑘1𝑡

𝑑2
, 𝜏𝑠 =

𝑘1𝑡𝑠

𝑑2
, 𝜏𝑠

0 =
𝑘1𝑡𝑠

0

𝑑2
, 𝑡𝑠

0 =
2𝑊0

𝑓𝑉0𝑝0𝐴𝑘
, 

 𝑉∗ =
𝑉

𝑉0
, 𝑝∗ =

𝑝

𝑝0
, 𝑑 = √3𝑘1𝑡𝑠

0, (5) 

where 𝑝0 is the nominal value of pressure, 𝑘1 the thermal diffusivi-
ty of the disc material and 𝑑 is the effective depth of heat penetra-
tion. Based on equation (3), taking into account of the initial condi-
tion (4), the dimensionless sliding velocity can be found using the 
equation: 

𝑉∗(𝜏) = 1 −
1

𝜏𝑠
0 ∫ 𝑝∗(𝑠)𝑑𝑠

𝜏

0
, 0 ≤ 𝜏 ≤ 𝜏𝑠 . (6) 

Taking into account the growth of contact pressure at the be-
ginning of braking, and also fluctuations of its value due to anti-
lock braking system, the dimensionless time-dependent pressure 
function 𝑝∗(𝜏) is (Yevtushenko et al., 2010; Kuciej, 2011) calcu-
lated as: 

𝑝∗(𝜏) = [1 − exp (
−𝜏

𝜏𝑚
)] [1 + 𝑎sin (𝜔𝜏)], 0 ≤ 𝜏 ≤ 𝜏𝑠 , (7) 

where 𝑡𝑚 is the time of pressure increase, 𝜏𝑚 = 𝑘1𝑡𝑚𝑑−2 the 
dimensionless time of pressure increase, 𝑎 the dimensionless 
amplitude of pressure oscillations and 𝜔 is the dimensionless 
frequency of pressure oscillations. With the analytical solution of 
equation (6) including pressure (7), the dimensionless sliding 
speed was found: 

 𝑉∗(𝜏) = 1 −
𝜏

𝜏𝑠
0 +

𝜏𝑚

𝜏𝑠
0 [1 − exp (

−𝜏

𝜏𝑚
)] −

𝑎

𝜏𝑠
0 𝑉𝑎

∗(𝜏), 0 ≤ 𝜏 ≤ 𝜏𝑠 , 

𝑉𝑎
∗(𝜏) =

1

𝜔
[1 − cos (𝜔𝜏)] +

1

𝜔2+𝜏𝑚
−2 {exp (

−𝜏

𝜏𝑚
) [𝜔 cos(𝜔𝜏) +

                    + 𝜏𝑚
−1sin (𝜔𝜏)]} − 𝜔. (8) 

 The stop condition 𝑉∗(𝜏𝑠) = 0 allows to calculate numerically 
the time of braking. 

For constant friction coefficient 𝑓, the specific friction power 
is the product of sliding velocity (8) and pressure (7): 

𝑞(𝑡) = 𝑞0𝑞∗(𝜏), 𝑞0 = 𝑓𝑝0𝑉0,    

𝑞∗(𝜏) = [1 − exp (
−𝜏

𝜏𝑚
)] [1 + 𝑎sin (𝜔𝜏)] 〈1 −

𝜏

𝜏𝑠
0 +

𝜏𝑚

𝜏𝑠
0 [1 −

                −exp (
−𝜏

𝜏𝑚
)] −

𝑎

𝜏𝑠
0 𝑉𝑎

∗(𝜏)〉, 0 ≤ 𝜏 ≤ 𝜏𝑠. (9) 

 Substituting 𝑎 = 0, the obtained relations (7)–(9) take the 
forms:  

𝑝∗(𝜏) = 1 − exp (
−𝜏

𝜏𝑚
), 𝑉∗(𝜏) = 1 −

𝜏

𝜏𝑠
0 +

𝜏𝑚

𝜏𝑠
0 [1 − exp (

−𝜏

𝜏𝑚
)],  

𝑞∗(𝜏) = [1 − exp (
−𝜏

𝜏𝑚
)] 〈1 −

𝜏

𝜏𝑠
0 +

𝜏𝑚

𝜏𝑠
0 [1 − exp (

−𝜏

𝜏𝑚
)]〉,  

0 ≤ 𝜏 ≤ 𝜏𝑠 ,  (10) 

which correspond to braking with monotonically increasing 
pressure without fluctuations.  
 As the time of pressure growth approaches zero, 𝜏𝑚 → 0, 

from equations (7) to (10), the following equations were obtained: 

𝑝∗(𝜏) = 1 + 𝑎sin (𝜔𝜏),   

𝑉∗(𝜏) = 1 −
𝜏

𝜏𝑠
0 −

𝑎

𝜏𝑠
0 {

1

𝜔
[1 − cos (𝜔𝜏)] − 𝜔}, 

𝑞∗(𝜏) = [1 + 𝑎sin (𝜔𝜏)] 〈1 −
𝜏

𝜏𝑠
0 −

𝑎

𝜏𝑠
0 {

1

𝜔
[1 − cos (𝜔𝜏)] − 𝜔}〉, 

0 ≤ 𝜏 ≤ 𝜏𝑠.  (11) 

 And the simpliest typical braking process with uniform 
pressure can be found for 𝑎 = 0 and 𝜏𝑚 → 0: 

𝑝∗(𝜏) = 1,  𝑉∗(𝜏) = 1 −
𝜏

𝜏𝑠
0 ,  𝑞∗(𝜏) = 1 −

𝜏

𝜏𝑠
0,  

0 ≤ 𝜏 ≤ 𝜏𝑠 = 𝜏𝑠
0.  (12) 

4. THE HEAT PROBLEM OF FRICTION 

 To establish the temperature field 𝑇𝑖(𝑧, 𝑡) in the brake disc 
(𝑖 = 1) and pad (𝑖 = 2), the thermal problem of friction was 
considered. Due to the symmetry of the system, we assume that 
the friction processes occurring on both friction surfaces of the 
brake disc are the same; so, the model was prepared for half of 
this system. Based on assumptions (1–4), half of the disc and the 
brake pad was simplified by a system of two semi-limited bodies. 
The orientation of semi-space/semi-space system considered 
here is given relative to a Cartesian frame of reference 𝑂𝑥𝑦𝑧 
(Fig. 1). 

 
Fig. 1. Scheme of the problem 
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 On the contact surface, 𝑧 = 0; the frictional heat is generated 

and absorbed by elements along the 𝑧-axis direction. It was as-
sumed that the friction materials are homogeneous and their 
thermal properties do not change during braking. 
 The boundary value problem of heat conduction was 
formulated for a semi-space/semi-space system in the 
dimensionless form:  

𝜕2

𝜕𝜁2
𝑇1

∗(𝜁, 𝜏) =
𝜕

𝜕𝜏
𝑇1

∗(𝜁, 𝜏), 𝜁 > 0, 0 < 𝜏 ≤ 𝜏𝑠 , (13) 

𝜕2

𝜕𝜁2
𝑇2

∗(𝜁, 𝜏) =
1

𝑘∗

𝜕

𝜕𝜏
𝑇2

∗(𝜁, 𝜏), 𝜁 < 0, 0 < 𝜏 ≤ 𝜏𝑠, (14) 

𝐾∗ 𝜕

𝜕𝜁
𝑇2

∗(𝜁, 𝜏)|
𝜁=0

−
𝜕

𝜕𝜁
𝑇1

∗(𝜁, 𝜏)|
𝜁=0

= 𝑞∗(𝜏), 0 < 𝜏 ≤ 𝜏𝑠, (15) 

𝑇1
∗(0, 𝜏) = 𝑇2

∗(0, 𝜏) = 𝑇∗(𝜏), 0 < 𝜏 ≤ 𝜏𝑠, (16) 

𝑇𝑖
∗(𝜁, 𝜏) → 0, |𝜁| → ∞, 0 < 𝜏 ≤ 𝜏𝑠 , 𝑖 = 1,2, (17) 

𝑇𝑖
∗(𝜁, 0) = 0, |𝜁| ≥ 0, 𝑖 = 1,2,   (18) 

𝜁 =
𝑧

𝑑
, 𝐾∗ =

𝐾2

𝐾1
, 𝑘∗ =

𝑘2

𝑘1
, 𝑇0 =

𝑞0𝑑

𝐾1
, 𝜏 =

𝑘1𝑡

𝑑2 , 𝜏𝑠 =
𝑘1𝑡𝑠

𝑑2 ,     

  𝑇𝑖
∗ =

𝑇𝑖−𝑇𝑎

𝑇0
, 𝑑 = √3𝑘1𝑡𝑠

0, 𝑖 = 1,2 , (19) 

where 𝑇𝑎 is the initial temperature. 
 Solution to the problem (13)–(19) was found based on the 
following Duhamel’s theorem (Ozisik,1993). 

𝑇𝑖
∗(𝜁, 𝜏) = ∫ 𝑞∗(𝑠)

𝜕

𝜕𝜏
𝑇𝑖

∗(0)(𝜁, 𝜏 − 𝑠)𝑑𝑠
𝜏

0
, 

|𝜁| ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠 , 𝑖 = 1,2,   (20) 

where (Carlslaw and Jaeger, 1959) 

𝑇𝑖
∗(0)(𝜁, 𝜏) = 2𝛾√𝜏ierfc[𝑍𝑖(𝜁, 𝜏)],  𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠, 

𝑍1(𝜁, 𝜏) =
𝜁

2√𝜏
, 𝜁 ≥ 0, 𝑍2(𝜁, 𝜏) =

𝜁

2√𝜏𝑘∗
, 𝜁 ≤ 0, 

 𝛾 = (1 + 𝜀)−1, 𝜀 = 𝐾∗(𝑘∗) −0.5 (21) 

is the solution to the problem (13)–(19) with a constant intensity of 
frictional heat flux 𝑞∗(𝜏) = 1 in the boundary condition (15). 
Taking into account the partial derivative of function (21) 
(Abramowitz and Stegun, 1972) 

𝜕

𝜕𝜏
𝑇𝑖

∗(0)(𝜁, 𝜏) = 𝛾[𝜋(𝜏 − 𝑠)]−0.5exp[−𝑍𝑖
2(𝜁, 𝜏 − 𝑠)] (22) 

and the obtained specific friction power 𝑞∗(𝜏) (9), we determined 
the temperature fields for the braking process considered here:  

𝑇𝑖
∗(𝜁, 𝜏) = 𝛾𝜋−0.5 ∫ [1 − exp (

−𝑠

𝜏𝑚
)] [1 + 𝑎 sin(𝜔𝜏)] 〈1 −

𝑠

𝜏𝑠
0 +

𝜏

0

+
𝜏𝑚

𝜏𝑠
0 [1 − exp (

−𝑠

𝜏𝑚
)] −

−
𝑎

𝜏𝑠
0 {

1

𝜔
[1 − cos (𝜔𝑠)] +

1

𝜔2+𝜏𝑚
−2 {exp (

−𝑠

𝜏𝑚
) [𝜔 cos(𝜔𝑠) +

       + 𝜏𝑚
−1sin (𝜔𝑠)]} − 𝜔}〉 (𝜏 − 𝑠)−0.5exp[−𝑍𝑖

2(𝜁, 𝜏 − 𝑠)]𝑑𝑠,  

0 ≤ 𝜏 ≤ 𝜏𝑠 , − ∞ < 𝜁 < ∞,  𝑖 = 1,2. (23) 

 In the case of braking, when the time of pressure increase is 
close to zero, 𝜏𝑚 → 0 (11), the solution to the thermal friction 
problem (13)–(19) has the following form:  

𝑇𝑖
∗(𝜁, 𝜏) =

𝛾

√𝜋
∫ [1 + 𝑎sin(𝜔𝜏)] 〈1 −

𝜏

𝜏𝑠
0 −

𝑎

𝜏𝑠
0 {

1

𝜔
[1 − cos(𝜔𝑠)] −

𝜏

0

−𝜔}〉 (𝜏 − 𝑠)−0.5exp[−𝑍𝑖
2(𝜁, 𝜏 − 𝑠)]𝑑𝑠,  

0 ≤ 𝜏 ≤ 𝜏𝑠 , − ∞ < 𝜁 < ∞,  𝑖 = 1,2. (24) 

 Analytical integration of the formulas (23) and (24) 
is impossible. Therefore, it was done by means of the adaptive 
quadrature integrator, which handles singularities – procedure 
QAGS from a package of numerical integration QUADPACK 
(Piessens et al., 1983). 
 The analytical solution to the considered problem (13)–(19) 
without taking into account the pressure oscillations for 𝑎 = 0 has 
been succesfully found in the paper Topczewska (2018). Using 
the same method (20)–(22) for functions (10), the following 
formula has been obtained: 

𝑇∗(𝜏) = 𝛾√𝜏 [(1 +
𝜏𝑖

2𝜏𝑠
0 −

2

3

𝜏

𝜏𝑠
0)

2

√𝜋
− (1 −

𝜏

𝜏𝑠
0 +

3

2

𝜏𝑖

𝜏𝑠
0) 𝐷 (√

𝜏

𝜏𝑖
) +

                             +
𝜏𝑖

𝜏𝑠
0 𝐷 (√

2𝜏

𝜏𝑖
)] , 0 < 𝜏 ≤ 𝜏𝑠,   (25) 

where 

𝐷(𝑥) =
2

√𝜋

exp(−𝑥2)

𝑥
∫ exp(𝑠2)

𝑥

0
𝑑𝑠. (26) 

However, this solution, (25) and (26), allows to establish 
temperature evolution only of the friction surface 𝜁 = 0, where the 
temperature level is the highest. 
 Also, the full analytical solution of this problem (13)–(19) has 
been determined for the uniform braking mode in the paper 
Yevtushenko et al. (2019): 

𝑇𝑖
∗(𝜁, 𝜏) =

4

3
𝛾√𝜏

𝜏

𝜏𝑠

〈{3
𝜏𝑠

𝜏
− 2[1 + 𝑍𝑖

2(𝜁, 𝜏)]} ierfc[𝑍𝑖(𝜁, 𝜏)] +

                                      + 𝑍𝑖(𝜁, 𝜏)erfc[𝑍𝑖(𝜁, 𝜏)]〉, 

|𝜁| ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠 , 𝑖 = 1,2,   (27) 

which allows to calculate temperature both on the contact surface 
and at any depth |𝜁| ≥ 0 inside the friction elements.  

5. NUMERICAL ANALYSIS 

 Distribution of temperature during braking was designated for 
the friction pair consisting of the pad made of metal–ceramic 
composite FMC-11 and the brake disc made of cast iron 
ChNMKh. Properties of these materials and input parameters to 
perform analysis are presented in Table 1. 

Table 1. Input parameters (Yevtushenko et al., 2020; Kuciej, 2012) 

Thermal conductivity of disc, 𝐾1 (W/mK) 51 

Thermal conductivity of pad, 𝐾2 (W/mK) 34.3 

Thermal diffusivity of disc, 𝑘1 (mm2/s) 14 

Thermal diffusivity of pad, 𝑘2 (mm2/s) 15.2 

Initial velocity, 𝑉0 (m/s) 23.8 

Initial kinetic energy, 𝑊0 (k) 103.54 

Nominal contact pressure, 𝑝0 (MPa) 0.607 

Friction coefficient, 𝑓 (−) 0.27 

Time of pressure increase, 𝑡𝑚 (s) 0.5 

Ambient temperature, 𝑇𝑎 (°C) 20 

External radius, 𝑟𝑒 (mm) 37.5 

Internal radius, 𝑟𝑖  (mm) 26.5 

Pressure fluctuation amplitude, 𝑎 (−) 0.1 

Pressure fluctuation frequency, 𝜔 (−) 100 
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 Based on the values included in Table 1, the following 
parameters were computed: the time of braking 𝑡𝑠 = 12.43 s, the 
whole area of friction pair contact 𝐴𝑘 = 4.42 × 10−3 m2, effective 
depth of heat penetration in the brake disc 𝑑 = 22.45 mm and the 
coefficient of heat flux partition 𝛾 = 0.607. 

 
Fig. 2. Changes of contact pressure 𝑝 and sliding speed 𝑉 during 

braking on account of pressure fluctuations for 𝑎 = 0.1 (solid 
lines), (7), (8) and without for 𝑎 = 0 (dashed lines) (6), (10) 

 Changes in contact pressure 𝑝 and sliding speed 𝑉 during 
braking are shown in Fig. 2. Solid lines present the results ob-
tained for oscillations with amplitude 𝑎 = 0.1 (7), (8), and dashed 
lines show the results obtained excluding the pressure fluctuations 
for 𝑎 = 0 (10). In the first case (for 𝑎 = 0.1), at the beginning of 
the process, the pressure rapidly increases. After that, it oscillates 
around the nominal value 𝑝0 with a constant amplitude to the end 
of braking 𝑡 = 𝑡𝑠. However, the sliding velocity monotonically 
decreases in time until the stop moment. The time profiles of 
speed in both cases are almost convergent (Fig. 2). 

 
Fig. 3. Changes of specific friction power 𝑞 (9) and temperature 𝑇 on the 

contact surface during braking: including the pressure fluctuations 
for 𝑎 = 0.1 (solid lines) (23) and excluding for 𝑎 = 0 (dashed 

lines) (24) 

 Pressure oscillations with 𝑎 = 0.1 noticeably affect specific 
friction power 𝑞 (9) and temperature 𝑇 (23), (24) on the contact 

surface 𝑧 = 0, which is demonstrated in Fig. 3 by solid lines. The 
amplitude of their fluctuations is the greatest near the time 

moment of reaching their maximum values 𝑞max = 3.46 W/mm2 
and 𝑇max = 339.5°C at time moments 𝑡 = 2.66 s and 𝑡 = 6.64 s, 
respectively, and after that it decreases until the end of braking. 
Temperature oscillations on the friction surface are much less 
intense than the fluctuations of specific friction power. 

 
Fig. 4. Variations of temperature 𝑇 (23) on the contact surfaces 𝑧 = 0 

and on selected distance from 𝑧 in the disc (𝑖 = 1) (solid lines) 
and pad (𝑖 = 2) (dotted lines) 

 
Fig. 5. Dependence of maximum temperature 𝑇max attained during 

braking on the value of dimensionless amplitude 𝑎 

 Changes in temperature 𝑇 on the interface and few depths 𝑧 
inside the brake disc (𝑖 = 1) (solid lines) and pad (𝑖 = 2) (dotted 
lines) were calculated based on formula (23) and are presented in 
Fig. 4. The temperature values on the contact surfaces |𝑧| = 0 

are the highest and the same for both friction pair elements (16). 
Due to similarity of thermal properties of friction materials (Table 
1), the values of achieved temperature at selected distances in 
both elements are close to each other. The greater the distance 
from the friction surface 𝑧, the more noticeable are the differences 
between the temperature in the disc and the pad. As the distance 
from the friction surface increases, the temperature level 
decreases and its maximum values are reached later. The 
influence of pressure oscillations on temperature is especially 
visible on the friction surfaces 𝑧 = 0, and moving away from this 
surface, the fluctuation amplitude decreases. Below the depth 
𝑧 = 5 mm, this effect is not noticeable both in the disc and the 
brake pad.  
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 Figure 5 presents the maximum temperature values achieved 
on the contact surface during braking for different values of 
fluctuations amplitude 𝑎. When braking without contact pressure 
oscillation 𝑎 = 0, the maximum temperature value is 𝑇max =

340°C. The lowest value of maximum temperature 𝑇max = 339°C 
is attained for small pressure fluctuations with an amplitude 
𝑎 = 0.03. However, further increasing the amplitude value causes 
increase in maximum temperature to 𝑇max = 353.9°C at the most 
intense oscillations for an amplitude 𝑎 = 0.3. 

6. CONCLUSIONS 

 Numerical analysis of temperature distribution in a pad/disc 
brake system was performed based on the solution to the 
boundary value problem of heat conduction formulated with 
oscillating pressure. Calculations were performed for the frictional 
pair such as composite pad and cast iron disc. Results were 
compared with data obtained excluding the pressure fluctuations. 
The following conclusions were made: 
1. Pressure fluctuations do not influence the sliding speed of the 

brake disc, and hence the time of braking. 
2. The temperature in the disc and pad oscillates only in the near 

distance from friction surface and with a much lower intensity 
than the corresponding fluctuations in pressure. The 
amplitude of temperature oscillations changes over time 
during braking and achieves the highest value in the middle of 
process, despite the fact that pressure fluctuates with 
a constant amplitude. 

3. Increase in the level of amplitude of pressure fluctuations 
causes a slight increase in the value of maximum temperature 
attained on the friction surface. 
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