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Abstract: This paper presents the plate structural analysis based on the finite element method (FEM) using a double interpolation element 
with arbitrary meshing. This element used in this research is related to the first-order shear deformation theory (FSDT) and the double in-
terpolation procedure. The first stage of the procedure is the same with the standard FEM for the quadrilateral element, but the averaged 
nodal gradients must be computed for the second stage of this interpolation. Shape functions established by the double interpolation pro-
cedure exhibit more continuous nodal gradients and higher-order polynomial contrast compared to the standard FEM when analysing the 
same mesh. Note that the total degrees of freedom (DOFs) do not increase in this procedure, and the trial solution and its derivatives are 
continuous across inter-element boundaries. Besides, with controlling distortion factors, the interior nodes of a plate domain are derived 
from a set of regular nodes. Four practical examples with good results and small errors are considered in this study for showing excellent 
efficiency for this element. Last but not least, this element allows us to implement the procedure in an existing FEM computer code as well 
as can be used for nonlinear analysis in the near future. 
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1. INTRODUCTION 

The first-order shear deformation theory (FSDT) is simple to 
implement and is applied for plate-shell structures, but because of 
finite element analyses, the accuracy of solutions will be strongly 
dependent on the shear correction factors, as studied by Allman 
(1984). Hence, the finite element method (FEM) associated with 
the FSDT shows reasonable results and easy implementation of 
the standard FEM codes. Because of their better performance,  
quadrilateral elements are usually used compared with other 
elements. As referenced in the studies by Ansys (2009), Bui et al. 
(2014), Ton-That et al. (2020), Nguyen-Xuan et al. (2010), Ton-
That (2019), Hoang (2020) and Ton-That (2020), the difficulty in 
the development of the four-node element related to thin plates 
will be rectified by using shear correction factors. Furthermore, in 
the literature, there are many other ways to enhance solutions of 
the FEM. A new method was proposed by Ahmadian and Farughi 
(2011) to obtain shape functions for superconvergent element 
models; by using an inverse method proposed by Ahmadian and 
Farughi (2011), new formulation for the plane stress element with 
superconvergent properties was also presented, and the super-
convergent element formulations in local co-ordinates were ob-
tained by using inverse strategies proposed by Farughi and Ah-
madian (2010). Besides, a novel four-node quadrilateral element 
with five degrees of freedom (DOFs) per node, SQ4P, based on 
the FSDT and Chebyshev polynomials was introduced by Hoang-
Lan et al. (2021) to analyse plate/shell structures. Another ele-
ment was improved by using edge-based smoothed strains for 
analyses of laminated composite plates as in the study by Chau-

Dinh et al. (2021). The C0- type of Shi’s third-order shear defor-
mation theory can be applied for linear and nonlinear analyses of 
composite plates because this theory was taking the advantages 
and desirable properties of the third-order shear deformation 
theory such as in paper of Hoang-Lan (2020), etc. The smoothed 
FEM represented by the SQ4C element as in the studies by Ho-
ang-Lan (2020), Ton-That et al. (2020), Hoang-Lan and Nguyen-
Van (2021) or the isogeometric analysis shown in the studies by 
Tran et al. (2017), Da et al. (2012) and Devarajan et al. (2018, 
2020) is reported here. Going back to this paper, the main objec-
tive of the present work is to review the influence of mesh irregu-
larity on the results of plate structural analysis based on a double 
interpolation element that related to the double interpolation pro-
cedure. Several desirable characteristics of this procedure are 
listed here: (i) the total number of the DOFs of the whole system 
does not change, (ii) the trial solution and its derivatives are con-
tinuous across inter-element boundaries, or in other words, stress 
in the domain can be transited smoothly element by element as 
indicated in the studies by Bui et al. (2014), Wu et al. (2012), 
Zheng et al. (2010) or Ton-That et al. (2020). In this study, all 
parts of element stiffness matrices are established and then ap-
plied to consider the behaviours of plate structures. 

The rest of this paper is given as follows. Section 2 briefly 
presents the formulation of the double interpolation element based 
on the FSDT and the double interpolation procedure. Section 3 
shows the numerical results and some discussions related to this 
element with mesh irregularity for structural analysis. Finally, 
some conclusions drawn from the study are presented in the last 
section. 
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2. FORMULATION 

2.1. The first-order shear deformation theory  

The FSDT for plates includes the effect of transverse shear 
deformations. In the FSDT, the normals to the undeformed middle 
plane of the plate remain straight but not normal to the deformed 
middle surface. 

 
Fig. 1. A plate with positive definition of displacements and rotations 

The displacements in the plate can be expressed by the FSDT 
of Reddy (2007) as follows: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢𝑜(𝑥, 𝑦) + 𝑧𝛽𝑥   (1) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣𝑜(𝑥, 𝑦) + 𝑧𝛽𝑦  (2) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑜(𝑥, 𝑦)  (3) 

where u, v and w are the translational displacements in the x, y 
and z directions, respectively, uo, vo and wo correspond to the 
displacements of the middle plane and βx and βy are, respectively, 
the rotation of the mid-plane of x and y axis with positive direc-
tions defined in (Fig. 1). 

The in-plane strains are obtained as 

𝜀 = [

𝑢𝑜,𝑥

𝑣𝑜,𝑦

𝑢𝑜,𝑦 + 𝑣𝑜,𝑥

] + 𝑧 [

𝛽𝑥,𝑥

𝛽𝑦,𝑦

𝛽𝑥,𝑦 + 𝛽𝑦,𝑥

] = 𝜀𝑚 + 𝑧𝜀𝑏  (4) 

while the transverse shear strains are obtained as 

𝛾 = [
𝛾𝑥𝑧

𝛾𝑦𝑧
] = [

𝛽𝑥 + 𝑤,𝑥

𝛽𝑦 + 𝑤,𝑦
]  (5) 

The linear elastic stress-strain relations in in-plane part are 
defined for a homogeneous, isotropic material as 

𝝈 = 𝐃𝛆  (6) 

where D is defined as 

𝑫 = [
𝑫𝒎 𝟎
𝟎 𝑫𝒃

]  (7) 

𝑫𝒎 =
𝐸𝑡

1−𝜈2 [

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

]  (8) 

𝑫𝒃 =
𝐸𝑡3

12(1−𝜈2)
[

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

]  (9) 

while the linear elastic stress-strain relations in transverse shear 
part are defined as 

𝝉 = 𝑫𝒔𝛄                                                                                  (10) 

with 

𝑫𝒔 =
𝐸𝑡𝑘𝑠

2(1+𝜈)
[
1 0
0 1

]                                                               (11) 

and ks = 5/6 is the shear correction factor.   
Note that nonlinear relations are not mentioned in this paper. 
 

2.2. The double interpolation procedure 

Let xC be a point in a four-node quadrilateral element with 
nodes i, j, k and m as shown in Fig. 2. The author denotes Si, Sj, 
Sk and Sm elements that share nodes i, j, k and m. The supporting 
nodes for the point xC in this quadrilateral element involve all 
nodes of elements Si, Sj, Sk and Sm. The support domain of point 
xC is much larger than the standard FEM support domain, and the 
trial solution at point xC can be written as follows: 

𝑢̌(𝑥) = ∑ 𝑁𝑟̌(𝑥)𝑑𝑟
𝑛𝑠𝑝

𝑟=1 = 𝑁̌(𝑥)𝑑                                        (12) 

In equation (12), the double interpolation shape function is de-
termined 

𝑁𝑟̌ = 𝜑𝑖𝑁𝑟
[𝑖]

+ 𝜑𝑖𝑥𝑁𝑟,𝑥
[𝑖]

+ 𝜑𝑖𝑦𝑁𝑟,𝑦
[𝑖]

+ 𝜑𝑗𝑁𝑟
[𝑗]

+ 𝜑𝑗𝑥𝑁𝑟,𝑥
[𝑗]

+

𝜑𝑗𝑦𝑁𝑟,𝑦
[𝑗]

+ 𝜑𝑘𝑁𝑟
[𝑘]

+ 𝜑𝑘𝑥𝑁𝑟,𝑥
[𝑘]

+ 𝜑𝑘𝑦𝑁𝑟,𝑦
[𝑘]

+ 𝜑𝑚𝑁𝑟
[𝑚]

+

𝜑𝑚𝑥𝑁𝑟,𝑥
[𝑚]

+ 𝜑𝑚𝑦𝑁𝑟,𝑦
[𝑚]

                                                           (13) 

where dr denotes the nodal displacement vector, while  is the 

shape function with respect to node i, and nsp is the total number 
of the supporting nodes in regard to the point xC. 

 
Fig. 2. Schematic sketch of the double interpolation procedure for a 

quadrilateral element in 2D 

The formulation of the average derivative of the shape func-
tions at node i is given (similar for other nodes). 

𝑁𝑟,𝑥
[𝑖]

= ∑ (𝜔𝑒𝑁𝑟,𝑥
[𝑖][𝑒]

)𝑒∈𝑆𝑖
                                                       (14) 

𝑁𝑟,𝑦
[𝑖]

= ∑ (𝜔𝑒𝑁𝑟,𝑦
[𝑖][𝑒]

)𝑒∈𝑆𝑖
                                                       (15) 
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In equations (14) and (15), the term 𝑁𝑟,𝑥
[𝑖][𝑒]

is the derivative of 

𝑁𝑟
[𝑖]

 computed in element e, and 𝜔𝑒 is the weight function of 

element e ∈ Si, which is defined 

𝜔𝑒 =
𝐴𝑒

∑ 𝐴𝑒̅𝑒̅∈𝑆𝑖

                                                                          (16) 

eA being the area of the element e. In equation (13), the functions 

𝜑𝑖, 𝜑𝑖𝑥  and 𝜑𝑖𝑦 forming the polynomial basis associated with 

node i must satisfy the following conditions 

𝜑𝑖(𝑥𝑟) = 𝛿𝑖𝑟       𝜑𝑖,𝑥(𝑥𝑟) = 0      𝜑𝑖,𝑦(𝑥𝑟) = 0                            

𝜑𝑖𝑥(𝑥𝑟) = 0     𝜑𝑖𝑥,𝑥(𝑥𝑟) = 𝛿𝑖𝑟    𝜑𝑖𝑥,𝑦(𝑥𝑟) = 0              (17)           

𝜑𝑖𝑦(𝑥𝑟) = 0      𝜑𝑖𝑦,𝑥(𝑥𝑟) = 0     𝜑𝑖𝑦,𝑦(𝑥𝑟) = 𝛿𝑖𝑟                       

with r is any one of the indices i, j, k and m 

𝛿𝑖𝑟 = {
1 𝑖𝑓 𝑖 = 𝑟
0 𝑖𝑓 𝑖 ≠ 𝑟

                                                            (18) 

The above conditions have to be applied in a similar manner 

to other functions, i.e., 𝜑𝑗, 𝜑𝑗𝑥, 𝜑𝑗𝑦, 𝜑𝑘, 𝜑𝑘𝑥, 𝜑𝑘𝑦, 𝜑𝑚, 𝜑𝑚𝑥  

and 𝜑𝑚𝑦 . These polynomial basis functions 𝜑𝑖, 𝜑𝑖𝑥  and 𝜑𝑖𝑦 for 

the quadrilateral element are given 

𝜑𝑖 = 𝑅𝑖 + 𝑅𝑖
2𝑅𝑗 + 𝑅𝑖

2𝑅𝑘 + 𝑅𝑖
2𝑅𝑚 

        −𝑅𝑖𝑅𝑗
2 − 𝑅𝑖𝑅𝑘

2 − 𝑅𝑖𝑅𝑚
2                                                (19) 

𝜑𝑖𝑥 = −(𝑥𝑖 − 𝑥𝑗)(𝑅𝑖
2𝑅𝑗 + 0.5𝑅𝑖𝑅𝑗𝑅𝑘 + 0.5𝑅𝑖𝑅𝑗𝑅𝑚) 

       −(𝑥𝑖 − 𝑥𝑘)(𝑅𝑖
2𝑅𝑘 + 0.5𝑅𝑖𝑅𝑘𝑅𝑗 + 0.5𝑅𝑖𝑅𝑘𝑅𝑚)      (20) 

       −(𝑥𝑖 − 𝑥𝑚)(𝑅𝑖
2𝑅𝑚 + 0.5𝑅𝑖𝑅𝑚𝑅𝑗 + 0.5𝑅𝑖𝑅𝑚𝑅𝑘) 

𝜑𝑖𝑦 = −(𝑦𝑖 − 𝑦𝑗)(𝑅𝑖
2𝑅𝑗 + 0.5𝑅𝑖𝑅𝑗𝑅𝑘 + 0.5𝑅𝑖𝑅𝑗𝑅𝑚) 

       −(𝑦𝑖 − 𝑦𝑘)(𝑅𝑖
2𝑅𝑘 + 0.5𝑅𝑖𝑅𝑘𝑅𝑗 + 0.5𝑅𝑖𝑅𝑘𝑅𝑚)      (21) 

       −(𝑦𝑖 − 𝑦𝑚)(𝑅𝑖
2𝑅𝑚 + 0.5𝑅𝑖𝑅𝑚𝑅𝑗 + 0.5𝑅𝑖𝑅𝑚𝑅𝑘) 

Other functions can be calculated in the same manner by us-
ing Eqs (19)–(21) with a circulatory permutation of indices i, j, k 
and m. Besides, Ri, Rj, Rk and Rm are the area coordinates of the 
point xC in the quadrilateral element with four nodes i, j, k and m; 
for more details, see in Bui et al. (2014), Wu et al. (2012), Zheng 
et al. (2010) and Ton-That et al. (2020). These shape functions 
are complete polynomials, satisfy properties of the partition of 
unity and possess Kronecker’s delta function property. 

2.3. The double interpolation element 

With five degrees of freedom for one node, the in-plane 
strains at an arbitrary point xC can be obtained as follows 

𝛆𝐦(𝑥𝐶) = 𝐁𝐦(𝑥𝐶)𝐪                                                             (22) 

𝛆𝐛(𝑥𝐶) = 𝐁𝐛(𝑥𝐶)𝐪                                                               (23) 

in which 

𝑞𝑖 = [𝑢𝑖 𝑣𝑖 𝑤𝑖      𝛽𝑥𝑖 𝛽𝑦𝑖]𝑇                                         (24) 

𝐁𝐦(𝑥𝐶) =  

 
 
 
 
 
 

sp

sp

sp sp
sp

1,x n ,x

1,y n ,y

1,y 1,x n ,y n ,x
3×5n

N 0 0 0 0 ... N 0 0 0 0

0 N 0 0 0 ... 0 N 0 0 0

N N 0 0 0 ... N N 0 0 0

          (25)      

𝐁𝐛(𝑥𝐶) =  

 

 
 
 
 
 
 

sp

sp

sp sp
sp

1,x n ,x

1,y n ,y

1,y 1,x n ,y n ,x
3×5n

0 0 0 N 0 ... 0 0 0 N 0

0 0 0 0 N ... 0 0 0 0 N

0 0 0 N N ... 0 0 0 N N

            (26) 

with nsp is the total number of the supporting nodes in regard to 
the point xC. The transverse shear strains are also expressed by 

𝛄(𝑥𝐶) = 𝐁𝐬(𝑥𝐶)𝐪                                                                 (27) 

where 

𝐁𝐬(𝑥𝐶) =  

 
 
 
 

sp sp

sp sp
sp

1,x 1 n ,x n

1,y 1 n ,y n
2×5n

0 0 N N 0 ... 0 0 N N 0

0 0 N 0 N ... 0 0 N 0 N
        (28) 

The double interpolation element stiffness matrix is then 
written as 

𝐊𝑒𝑙 = 𝐊𝐦 + 𝐊𝐦 + 𝐊𝐦 = ∫ 𝐁𝒎
𝑻 𝐃𝒎𝐁𝒎𝑑Ω

 

Ω
                                         

+ ∫ 𝐁𝒎
𝑻 𝐃𝒎𝐁𝒎𝑑Ω

 

Ω
+ ∫ 𝐁𝒎

𝑻 𝐃𝒎𝐁𝒎𝑑Ω
 

Ω
                               (29)                           

For static analysis 

𝐊𝐪 = 𝐅                                                                                   (30) 

with K is the global stiffness matrix and F is the load vector which 
is given as follows 

𝐅 = ∫ 𝐍𝑇𝐩𝑑Ω
 

Ω
                                                                       (31) 

in which N is the shape functions of standard quadrilateral 
element.  
For free vibration analysis 

(𝐊 − 𝜔2𝐌)𝐪 = 0                                                                 (32) 

with ω is the natural frequency and M is the global mass matrix 
which is defined by 

𝐌 = ∫ 𝐍𝑇𝐦𝐍𝑑Ω
 

Ω
                                                                 (33) 

𝐦 =  

 
 
 
 
 
 
 
 
 
  

2

2

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0
ρt t

0 0 0 0
12

t
0 0 0 0

12

                                             (34) 

2.4. The mesh irregularity procedure 

The domain of the plate structure is created by the double 
interpolation elements related to irregular interior nodes. These 
interior nodes are derived from a set of regular nodes by using a 
controlling distortion factor s. The coordinates of an irregular mesh 
are obtained by the following expressions: 
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𝑥′ = 𝑥 + 𝑟𝐶 × ∆𝑥                                                                  (35) 

𝑦′ = 𝑦 + 𝑟𝐶 × ∆𝑦                                                                  (36) 

where cr is a computer-generated random number between -1.0 

and 1.0; ∆𝑥, ∆𝑦 are initial regular element sizes in the x- and y- 
directions, respectively and s is used to control the shapes of the 
distorted elements. (Fig. 3) illustrates the mesh irregularity with 
three values 0.1, 0.2 and 0.3 of s. 

 
s = 0.1 

 
s = 0.2 

 
s = 0.3 

 
Fig. 3. Typical irregular meshes of 18 × 18 with various distortion factor s 

3. SOLUTIONS AND DISCUSSIONS  

The double interpolation element will be used through 
numerical examples. The SI units are used in this paper. 

3.1. The Cook’s membrane 

The Cook’s membrane problem is studied in this section with 
E = 1.0, ν = 0.499 and thickness t = 1, and this model is shown in 
Fig. 4. Under plane stress conditions, the reference value of the 
vertical displacement at the centre of the tip section (point C) in 
Fredriksson et al. (2004) is 23.96. Here, the double interpolation 
element is compared with other elements listed in Tab. 1 as well 
as in Fig. 5: Allman’s membrane triangle element (AT) by author 

Allman (1984), assumed stress hybrid methods such as P-S 
element by Pian et al. (1984), HQM/HQ4 element by Xie (2005) 
and node-based smoothed NSQ4 element by Xuan (2008). 
Furthermore, the normal stress field will be also plotted in Fig. 4.  
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Fig. 4. Typical irregular meshes of 8×8 with various distortion factor s 

(0.1; 0.2 and 0.3) and the normal stress field 

Tab. 1. Results of displacement tip (at C) for Cook’s problem 

Element 
Displacement tip 

2x2 4x4 6x6 8x8 10x10 

AT  19.67 22.41 – 23.45 – 

P-S  21.13 23.02 – 23.69 – 

HQM/HQ4  21.35 23.04 – 23.69 – 

NSQ4  24.69 25.38 – 24.51 – 

Paper (s = 0) 15.24 22.23 23.40 23.76 23.91 

Paper (s = 0.1) 14.31 21.87 23.36 23.62 23.90 

Paper (s = 0.2) 14.98 22.17 23.39 23.72 23.88 

Paper (s = 0.3) 15.34 22.04 23.04 23.75 23.81 

Ref (Exact 
solutiion) 

23.96 23.96 23.96 23.96 23.96 

AT, Allman’s membrane triangle element, P-S, element based on polynomial 
stress, HQM/HQ4, hybrid macro element, NSQ4, node-based smoothed element. 
 

Based on the comparison results as below, we can see that (i) 
when changing the value of s, the results obtained by the 

proposed element do not have big differences or, in other words, 
these results achieved stability with different distorted meshes, 
and (ii) when the total number of elements increases beyond 60, 
these results also converge to the exact result better than the 
other elements. 

Additionally, it is observed that the stress obtained by the 
proposed element is continuous and smooth, whereas the 
standard FEM does not guarantee such smoothness and 
continuity. 

 
 
 

 
Fig. 5. The comparison of displacements at point C and error of these 

displacements with exact solution. 

3.2. The L-shape plate subjected to in-plane load 

Next, consider a L-shaped domain with applied tractions, 
boundary conditions and arbitrary meshing, as shown in Fig. 6. 
The parameters of the structure are as follows: Young’s modulus 
E = 1.0, Poisson’s ratio ν = 0.3, length a = 50 and thickness t = 1. 
The reference value of the displacement at point A based on 
Ansys software from Ansys (2009, Canonsburg, PA 15317, USA) 
is 2.328,. The solutions of a double interpolation element related 
to s = 0; 0.1; 0.2 and 0.3 are in good agreement with Ansys 
solutions as depicted in Tab. 2. Besides, the normal stress field 
will be also plotted in Fig. 6. 
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Fig. 6. Typical irregular meshes with various distortion factor s (0.1; 0.2 

and 0.3) and the normal stress field 

Tab. 2. Results of displacement uA at point A for L-shape problems 

uA 

Paper 
s = 0 

s = 0.1 s = 0.2 s = 0.3 Ansys 

2.327 2.323 2.319 2.317 2.328 

Error 
(%) 

0.043 0.215 0.386 0.472  

Apparently, it is again shown that the normal stress achieved 
by the proposed element is continuous and smooth through all 
boundaries of the element. 

3.3. The square plate subjected to uniformly distributed and 
sinusoidal load 

The clamped square plate is considered in this section, as 
shown in Fig. 7.  

 
Fig. 7. A clamped square plate under uniformly distributed load and 

sinusoidal load 
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Following material properties of this isotropic plates are used: 
E = 210 GPa and ν = 0.3. When subjected to uniformly distributed 
and sinusoidal load, the author’s result obtained for the central 
displacement will now be compared and discussed with the corre-
sponding results of the exponential shear deformation theory 
(ESDT) by Sayyad et al. (2012), the higher-order shear defor-
mation theory (HSDT) by Reddy (1984), the trigonometric shear 
deformation theory (TSDT) by Ghugal et al. (2010), the FSDT by 
Mindlin (1951) and the classical plate theory (CPT) by Kirchhoff 
(1850), as shown in Tab. 3. The numerical result is presented in 
the following non-dimensional form w̅ = 100Ew/[qt(a/t)4] 
and shows good agreement with others. 

Tab. 3. Comparison of non-dimensional transverse displacement in an 
isotropic square plate subjected to uniformly distributed and 
sinusoidal load 

Theory Model 
 (Uniform load) 

 (Sinusoidal 

load) 

a/t=4 a/t=10 a/t=4 a/t=10 

Sayyad  ESDT 5.816 4.658 3.748 2.954 

Reddy  HSDT 5.869 4.666 3.787 2.961 

Ghugal  TSDT 5.680 4.625 3.653 2.933 

Mindlin  FSDT 5.633 4.670 3.626 2.934 

Kirchhoff  CPT 4.436 4.436 2.803 2.802 

Paper (s = 0) FSDT 5.626 4.633 3.782 2.913 

Paper 
(s = 0.1) 

FSDT 5.601 4.644 3.771 2.885 

Paper 
(s = 0.2) 

FSDT 5.583 4.556 3.734 2.889 

CPT, classical plate theory; ESDT, exponential shear deformation theory; 
FSDT, first-order shear deformation theory; HSDT, higher-order shear 
deformation theory; TSDT, trigonometric shear deformation theory. 

3.4. Free vibration analysis of the square plate 

In this last section, author investigates the efficiency of the 
double interpolation element for analyzing natural frequencies of 
square plates. The plate has clamped edges with length a and 
thickness t. The material parameters are E = 2.0 × 1011, ν = 0.3 
and ρ = 8000 as follows Nguyen-Xuan et al. (2010). The plate is 
modeled with 16 elements per each side.  

A non-dimensional frequency parameter 𝚟 = (𝜔2𝜌𝑎4𝑡/
𝐷)1/4 where 𝐷 = 𝐸𝑡3/(12(1 − 𝜈2)) is often used and then 
compared to analytical solutions and other numerical results 
which are available in the literature Nguyen-Xuan et al. (2010) and 
Robert (1979). Tab. 4 shows the first three values of based on the 
double interpolation element. 

Tab. 4. A non-dimensional frequency parameter of a CCCC square plate 

t/a Elements 
Mode sequence number 

1 2 3 

0.005 
DSG3 6.1786 8.8759 9.0680 

ES-DSG3  6.0355 8.6535 8.7081 

Paper (s = 0) 5.9861 8.5760 8.5760 

Paper 
(s = 0.1) 

5.9933 8.5822 8.5873 

Paper 
(s = 0.2) 

6.0182 8.6125 8.6165 

Paper 
(s = 0.3) 

6.0331 8.6396 8.6557 

Exact 5.9990 8.5680 8.5680 

0.1 

DSG3 5.7616 7.9935 8.0525 

ES-DSG3 5.7250 7.9211 7.9627 

Paper (s = 0) 5.7396 7.9787 7.9787 

Paper 
(s = 0.1) 

5.7402 7.9802 7.9803 

Paper 
(s = 0.2) 

5.7419 7.9822 7.9839 

Paper 
(s = 0.3) 

5.7449 7.9879 7.9901 

Exact 5.7100 7.8800 7.8800 

 

 

 
Fig. 8. Error of the normalized frequencies with t/a = 0.005 and t/a = 0.1 
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As shown in Fig. 8 with t/a = 0.005, the double interpolation 
element is almost better than the DSG3 and ES-DSG3 elements 
and gives a small error with the exact solution of Robert (1979) for 
all frequencies examined in this problem. Similarly, in Fig. 8 with 
t/a = 0.1, the paper’s results are better than the DSG3’s results for 
all frequencies. Besides, Fig. 9 shows the first mode shapes with 
the stability of paper’s results related to the small errors. 

 
Mode 1_s = 0     (5.9861) 

 

 
Mode 1_s = 0.1     (5.9933) 

 

 
Mode 1_s = 0.2     (6.0182) 

 

 
Mode 1_s = 0.3     (6.0331) 

Fig. 9. The first mode shapes of clamped square plate with t/a = 0.005 
and s = 0, 0.1, 0.2 and 0.3 

4. CONCLUSION 

This paper presented the stability of solutions when using 
mesh irregularity for structural analysis based on the FEM and the 
double interpolation elements. Due to the framework of the FSDT 
and the double interpolation procedure, the double interpolation 
element becomes an efficient flat quadrilateral element for 
structural analysis. The shape functions of this element are 
higher-order polynomials and posses the Kronecker-delta function 
property, which permits a straightforward imposition of the 
essential boundary conditions. Moreover, with the influence of 
neighbouring elements on the element under consideration, the 
errors will be reduced as well as the results will be stable and less 
affected by the mesh. Finally, the results obtained in this paper 
are also compared with other available numerical results to 
illustrate the robustness of this element as stated above. 
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