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Abstract: Artificial potential fields (APFs) are a popular method of planning and controlling the path of robot movement, including  
unmanned aerial vehicles (UAVs). However, in the case of nonholonomic robots such as fixed-wing UAVs, the distribution of velocity  
vectors should be adapted to their limited manoeuvrability to ensure stable and precise position tracking. The previously proposed local 
asymmetrical potential field resolves this issue, but it is not effective in the case of windy environments, where the UAV is unable  
to maintain the desired position and drifts due to the wind drift effect. This is reflected in the growth of position error, which, similar  
to the steady-state error in the best case, is constant. To compensate for it, the asymmetrical potential field approach is modified  
by extending definitions of potential function gradient and velocity vector field (VVF) with elements based on the integral of position  
tracking error. In the case of wind drift, the value of this integral increases over time, and lengths and orientations of velocity vectors will  
also be changed. The work proves that redefining gradient and velocity vector as a function of position tracking error integrals allows  
for minimisation of the position tracking error caused by wind drift. 

Key words: artificial potential field, asymmetrical potential field, position tracking, UAV, self-adaptive potential field

1. INTRODUCTION 

The field of unmanned aerial vehicles (UAVs) is one of the 
most rapidly developing ones in the field of robotics. Intensive 
research on technology and algorithms applied in UAVs is making 
them more and more autonomous. However, there remains much 
work to be done on core topics such as obstacle avoidance, path 
planning or formation flight to make them fully autonomous. The 
major contribution of UAVs to military or civil applications belongs 
to unmanned multirotor vehicles, their main advantage being their 
capability of hovering. This makes it easier to control a flight path, 
especially in an urban environment with plenty of obstacles. Un-
fortunately, the endurance of multi-rotor flights is limited as a 
result of their low power efficiency. Missions of fixed-wing UAVs 
are longer, but due to their limited manoeuverability as nonho-
lonomic vehicles, it is more difficult to precisely control the flight 
path. This particularly concerns such applications as obstacle 
avoidance, path planning or formation flight under windy condi-
tions. 

Artificial potential field (APF) methods are a convenient way to 
implement precise and stable position control in applications of 
position guidance or obstacle avoidance, and this also applies in 
the case of UAVs (Frew et al., 2007). The main advantage of APF 
comes from the fact that potential functions are Lyapunov func-
tions with local minimums. This ensures asymptotically stable 
control of robot position to achieve the desired shape of the path. 
Therefore, various approaches to APF are widely applied in algo-
rithms dedicated to problems of obstacle avoidance discussed in 
Budiyanto et al. (2015) and Nieuwenhuisen et al. (2013), path 

planning methods with movement among obstacles described in 
Chen  et al. (2016), Hatton and Choset (2011), Khuswendi et al. 
(2011), Mukherjee and Anderson (1993) and Nelson et al. (2007), 
formation flights presented in Barnes et al. (2007), Bennet and 
McInnes (2011), Bennet and McInnes (2008), Kokume and 
Uchiyama (2010), Kownacki and Ambroziak (2017), Nagao and 
Uchiyama (2014), Tobias et al. (2008), Suzuki and Uchiyama 
(2011) and Suzuki and Uchiyama (2010) or their combinations 
given in Cetin and Yilmaz (2016), Chen et al. (2015) and Mukher-
jee and Anderson (1993). Even the rules of birds flocking, i.e. 
repulsion and cohesion, which are applied in formation flights, can 
be considered implementations of APF (Kownacki and Ołdziej, 
2016; Virágh et al., 2014). APF precisely and clearly defines a 
relation between the velocity vector designating a specific guid-
ance route and the actual position relative to other UAVs, obsta-
cles or mission targets (Frew et al., 2007). As mentioned in Nagao 
and Uchiyama (2014), known APFs applied in the majority of 
articles concerning APF, also in those referred above, fail in the 
case of position tracking by nonholonomic vehicles. Typically, 
APF’s definitions provide a symmetrical distribution of velocity 
vectors around their minimums. This, combined with nonho-
lonomic constraints, leads to instability that manifests as violent 
changes of airspeed and heading angle (Frew et al., 2007; 
Kownacki and Ambroziak, 2017). This happens when a UAV is 
just near the point of tracked position and position tracking error 
decreases towards zero. Then, even small unintentional dis-
placement produces a violent change of the desired heading. 
Violent changes of heading can be explained by the fact that it is 
usually calculated from the ratio of position differences on the x 
and y axes of a navigational coordinate frame and the arctangent 



Cezary Kownacki                      DOI  10.2478/ama-2021-0006 
Self-Adaptive Asymmetrical Artificial Potential Field Approach Dedicated to the Problem of Position Tracking by Nonholonomic UAVs in Windy Environments 

 

38 

function. The varying ratio of distances on the x and y axes, from 
low values to high, occurring when both distance values oscillate 
around zero, results in significantly different values of angle ac-
cording to the curve of arctangent. 

The circular potential function based on a sigmoid function is 
one of the ideas meant to prevent these violent changes of head-
ing values and achieve a circular loiter pattern tracked by the 
UAV. Its effectiveness is the result of the symmetrical gradient 
distribution on both sides of the circular flight pattern, attracting 
the UAV to its line (Frew et al., 2007; Nagao and Uchiyama, 
2014). The flight pattern is a local minimum of the attractive poten-
tial function created as a combination of circular sigmoid func-
tions. In turn, in work of Kownacki and Ambroziak (2017), the 
novel approach based on an asymmetrical artificial potential 
function (AAPF), defined in a local coordinate system, provides 
position tracking stability in the case of formation flights of nonho-
lonomic fixed-wing UAVs. The definition of the asymmetrical 
potential function is used to create a velocity vector field (VVF), 
which guides a fixed-wing UAV in a way that smoothly aligns its 
heading and airspeed to the heading angle and airspeed of the 
tracked point. In the subsequent work (Kownacki and Ambroziak, 
2019), the approach is modified by expanding it by a rotation 
mechanism of the VVF. It counteracts increments of tracking error 
during manoeuvres as the result of formation rotation when a UAV 
is behind the leader and the tracked position. 

Unfortunately, none of the examples of application of artificial 
potential functions that are available in the literature account for 
external disturbances such as wind drift. A VVF is a geometrical 
representation of the relation between the expected direction of a 
UAV’s movement and its positions relative to a reference point. In 
turn, wind treated as the movement of air mass with a constant 
velocity can be represented by a homogeneous VVF. Thus, com-
bining the guidance VVF with the wind velocity vector field 
(WVVF) causes a UAV to drift from the desired position and its 
desired path of flight. The issue is especially important for nonho-
lonomic UAVs. Therefore, this work proposes a self-adaptive 
asymmetrical potential function mechanism which prevents such 
drift error, having the meaning of the steady-state error. The 
effectiveness of the presented adaptation mechanism is proven by 
the numerical simulation results discussed in Section 5. The idea 
of the mechanism is to consider integrals of tracking errors in 
definitions of potential function gradient and VVF only if there is 
any constant movement of air mass causing wind drift. The slope 
of the potential function, spatial orientation and lengths of gradi-
ents and velocity vectors will be changing depending on wind drift 
incrementing the integrals’ values. Therefore, the main contribu-
tion of this work is defining a new approach to the asymmetrical 
potential function from works of Kownacki and Ambroziak (2017) 
and Kownacki and Ambroziak (2019), which considers integrals of 
position tracking errors so as to minimise them in the case of wind 
drift effect. 

The next part of the article is divided into four sections. The 
first one formulates the problem of wind drift increasing position 
tracking error and producing a steady-state error. The second 
section presents new definitions of potential function gradient and 
VVF, which are based on the asymmetrical potential function 
approach modified by a self-adaptive mechanism applying inte-
grals of tracking error. In the third section, the results of numerical 
simulations compare responses to a step change of wind velocity 
in the cases of the proposed novel self-adaptive asymmetrical 
potential function approach and the previous approach from 

Kownacki and Ambroziak (2019). The conclusions and discussion 
are in the final section. 

2. PROBLEM FORMULATION 

Flight control based on artificial potential functions is conven-
ient as it transforms geometrical relations between a UAV’s posi-
tion and characteristic mission points into a VVF which accom-
plishes predefined rules of guidance, e.g. obstacle avoidance. 
Velocity vectors implementing guidance rules are used to calcu-
late navigational parameters such as desired heading and pitch 
angles and desired airspeed. These parameters are mostly con-
trolled by traditional PID (Proportional–Integral–Derivative) control 
loops with a two-level structure (Kownacki and Ambroziak, 2017; 
Kownacki and Ambroziak, 2019). Unfortunately, reaching the 
desired values of heading and pitch angles and airspeed by a 
UAV does not guarantee that flight will be controlled stably in the 
steady state. In windy environments, where there is a constant 
wind treated as the flow of air mass, the flight guidance of nonho-
lonomic UAVs can be disturbed, especially if it is a crosswind. 
What results is that the ground speed of fixed-wing UAVs is the 
sum of True Air Speed (TAS) and wind speed, and in aviation, this 
is called the wind drift effect. The problem of wind drift is present-
ed in Fig. 1a, where the asymmetrical artificial potential field 
(AAPF) approach is applied to track a moving point associated 
with the origin of a local coordinate system OxPiyPizPi. Arrows 
labelled with symbols VT, VW, VG, and VUAV represent, respectively, 
the velocity vector of the frame OxPiyPizPi (the velocity of the 
tracked point), the velocity vector of wind, the airspeed vector of 
the UAV obtained from the AAPF and the ground speed vector, 
which is the sum of the last two. Thus, the final flight path will be 
determined by the velocity vector VUAV, not by the velocity vector 
field VG. 

 
Fig. 1. A flight scenario when wind drift disturbs flight guidance based  

on the artificial asymmetrical potential field: (a) control of position 
tracking based on AAPF in the case of constant wind presence. 
There is an angle between the reference velocity vector VG given 
by AAPF and the ground speed vector VUAV, which is called the 
drift angle. (b) the UAV is unable to reach a tracked position due 
to its resultant ground speed vector VUAV being parallel to the  
velocity vector of the tracked position. AAPF - asymmetrical  
artificial potential field, UAV - unmanned aerial vehicle 

In Fig. 1b, there is a case where the UAV is unable to reach 
its desired position due to the fact that ground speed vector VUAV 
is parallel to the velocity vector of the tracked position VT. There-
fore, the relative positions, i.e. the position tracking error, will be 
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constant in the steady-state. For this and similar cases, constant 
wind can be considered as a homogenous VVF that modifies the 
tracking guidance, accordingly to the superposition of both fields 
of the velocity vector (Fig. 2). The superposition of these two fields 
makes it impossible for a fixed-wing UAV to achieve precise posi-
tion tracking. Therefore, the VVF constructed on AAPF should not 
be constant over time, but should change automatically in a way 
that minimises any position error in the steady-state caused by 

wind drift. The most convenient and simplest way to minimise 
errors in the steady state is to include integrals of these errors in 
the definitions of the VVF. The novel definition of the VVF based 
on the AAPF approach for fixed-wing UAVs is given in the next 
section. The method, which utilises this novel definition, is called 
the self-adaptive AAPF approach, and it is addressed to the prob-
lem of wind drift for nonholonomic UAVs. 

 
Fig. 2. A superposition of the VVF given by AAPF and the WVVF, modifying guidance and disabling the possibility of precise position tracking.  

AAPF - asymmetrical artificial potential field; VVF - velocity vector field; WVVF - wind velocity vector field. 

3. SELF-ADAPTIVE ASYMMETRICAL POTENTIAL FIELD 

The AAPF ensures stable position tracking in the case of non-
holonomic UAVs, which is proven in Kownacki and Ambroziak 
(2017). In turn, the rotation mechanism described in Kownacki 
and Ambroziak (2019) minimises tracking error during manoeu-
vres when nonholonomic UAVs fly in a rigid formation. The novel 
approach proposed in this work is also dedicated to nonholonomic 
vehicles; hence, the definition of AAPF from Kownacki and Am-
broziak (2017) and Kownacki and Ambroziak (2019) will be the 

starting point. Let us consider a scenario where a UAV tracks a 
virtual point which is simultaneously the origin of a local coordi-
nate system OxPiyPizPi. Spatial orientations of axes xPi, yPi and zPi 
are determined by vertical and horizontal movements of that point 
in the global coordinate system OxGyGzG. UAV coordinates given 
in the frame OxPiyPizPi are values of tracking errors. The proposed 
novel approach aims to minimise values of those coordinates 
when a fixed-wing UAV flies under windy conditions. 

The definition of AAPF 𝑈𝑖
𝑆 will be the same as in Kownacki 

and Ambroziak (2017) and Kownacki and Ambroziak (2019): 

𝑈𝑖
𝑆(𝑥𝑃𝑖 , 𝑦𝑃𝑖 , 𝑧𝑃𝑖) = {

𝑉𝐿 ⋅ arctan(𝛼 ⋅ 𝑥𝑃𝑖) +
1

3
⋅ 𝛾 ⋅ |𝑦𝑃𝑖

3| +
1

3
⋅ 𝛾 ⋅ |𝑧𝑃𝑖

3|, 𝑥𝑃𝑖 ≥ 0

𝑉𝐿 ⋅ |𝛼 ⋅ 𝑥𝑃𝑖| +
1

3
⋅ 𝛽 ⋅ |𝑥𝑃𝑖

3| +
1

3
⋅ 𝛾 ⋅ |𝑦𝑃𝑖

3| +
1

3
⋅ 𝛾 ⋅ |𝑧𝑃𝑖

3|, 𝑥𝑃𝑖 < 0
         

where VL – is the airspeed of the tracked virtual point, , ,  – 
coefficients regulating the slope of the potential function, i.e. in the 

forward longitudinal direction; (xPi0) – rate of deceleration, in 

backward direction; (xPi0) – rate of acceleration, and in both 

perpendicular directions, lateral and vertical; (yPi and zPi) – respec-
tively, rate of heading and pitch. 

According to Kownacki and Ambroziak (2017) and Kownacki 

and Ambroziak (2019), the gradient of the potential function 𝑈𝑖
𝑆 is 

as follows: 

∇𝑈𝑖
𝑆(𝑥𝑃𝑖 , 𝑦𝑃𝑖 , 𝑧𝑃𝑖) = {

[
𝛼⋅𝑉𝐿

1+(𝛼⋅𝑥𝑃𝑖)
2 , 𝛾 ⋅ 𝑠𝑔𝑛(𝑦𝑃𝑖) ⋅ 𝑦𝑃𝑖

2, 𝛾 ⋅ 𝑠𝑔𝑛(𝑧𝑃𝑖) ⋅ 𝑧𝑃𝑖
2] , 𝑥𝑃𝑖 ≥ 0

[𝑠𝑔𝑛(𝑥𝑃𝑖) ⋅ (𝛼 ⋅ 𝑉𝐿 + 𝛽 ⋅ 𝑥𝑃𝑖
2), 𝛾 ⋅ 𝑠𝑔𝑛(𝑦𝑃𝑖) ⋅ 𝑦𝑃𝑖

2, 𝛾 ⋅ 𝑠𝑔𝑛(𝑧𝑃𝑖) ⋅ 𝑧𝑃𝑖
2], 𝑥𝑃𝑖 < 0

   

(1) 

(2) 
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The gradient ∇𝑈𝑖
𝑆 is only a function of the relative position 

given in the local frame OxPiyPizPi. As shown in Fig. 1b, it can be 
insensitive to position tracking error at the steady state as a result 
of wind drift. Therefore, gradient definition (2) must be modified in 
a way that relates gradient components to cumulative tracking 
error expressed by its integral. According to Kownacki and Am-
broziak (2017) and Kownacki and Ambroziak (2019), gradient 

∇𝑈𝑖
𝑆 is the basis for creating the VVF that is used to calculate the 

desired heading, pitch and airspeed. Therefore, if the integral of 

tracking error modifies elements of gradient ∇𝑈𝑖
𝑆, it will affect 

UAV guidance. 
Modifications of gradient definition (2) on the longitudinal axis 

xPi will first be discussed. To minimise the steady-state tracking 

error on axis xPi, the length of gradient ∇𝑈𝑖
𝑆  and the length of the 

related velocity vector 𝑉𝑖
𝑠 on this axis should be changed accord-

ing to the increasing integral of tracking error. For xPi  0, the 

lengths should be decreased, and for xPi  0, increased. 

Therefore, the definition of the potential function gradient (2) 
must be modified by inserting coefficients dependent on the cur-
rent value of the integral IX. It adapts the gradient length on axis 
xPi with a strength depending on the values of gains 𝛿𝑥1, 𝛿𝑥2. The 

modified gradient ∇𝑈𝑖
𝐴𝐷  is defined by Eq. (3), and differences 

between definitions (2) and (3) are highlighted by bold font. In Eq. 

(2), coefficients on xPi, i.e.  and , are constant over time. In Eq. 

(3), these coefficients are, respectively, the sum of  and 

𝛿𝑥1 ⋅ |𝐼𝑋| and the sum of  and 𝛿𝑥2 ⋅ |𝐼𝑋|; therefore, they are 
time-variant and depend on the constant tracking error caused by 
wind drift. 

To formulate a new definition of velocity vector field 𝑉𝑖
𝑠, gradient 

∇𝑈𝑖
𝑆 must be replaced with ∇𝑈𝑖

𝐴𝐷 . However, for the yPi and zPi 

axes, both definitions (2) and (3) are identical. To change values 
of desired heading and pitch angles, it is necessary to introduce 
compensation vector I, which is a function of integrals IY and IZ. 

∇𝑈𝑖
𝐴𝐷(𝑥𝑃𝑖 , 𝑦𝑃𝑖 , 𝑧𝑃𝑖) = {

[
𝛼⋅𝑉𝐿

1+(𝛼+𝜹𝒙𝟏⋅|𝑰𝑿|)2⋅𝑥𝑃𝑖
2 , 𝛾 ⋅ 𝑠𝑔𝑛(𝑦𝑃𝑖) ⋅ 𝑦𝑃𝑖

2, 𝛾 ⋅ 𝑠𝑔𝑛(𝑧𝑃𝑖) ⋅ 𝑧𝑃𝑖
2] , 𝑥𝑃𝑖 ≥ 0

[𝑠𝑔𝑛(𝑥𝑃𝑖) ⋅ (𝛼 ⋅ 𝑉𝐿 + (𝛽 + 𝜹𝒙𝟐 ⋅ |𝑰𝑿|) ⋅ 𝑥𝑃𝑖
2
), 𝛾 ⋅ 𝑠𝑔𝑛(𝑦𝑃𝑖) ⋅ 𝑦𝑃𝑖

2, 𝛾 ⋅ 𝑠𝑔𝑛(𝑧𝑃𝑖) ⋅ 𝑧𝑃𝑖
2], 𝑥𝑃𝑖 < 0

  (3) 

where IX – is the value of the integral (Eq. 3) on axis xPi, 𝛿𝑥1, 𝛿𝑥2 – gains of IX. 

𝐼𝑋 = {∫ 𝑥𝑃𝑖𝑑𝜏
𝑡

0
 , (𝑥𝑃𝑖 ≥ 0 ∩ ∫ 𝑥𝑃𝑖𝑑𝜏

𝑡

0
≥ 0)  ∪ (𝑥𝑃𝑖 < 0 ∩ ∫ 𝑥𝑃𝑖𝑑𝜏

𝑡

0
≤ 0) 

 0
           (4) 

𝑉𝑖
𝑠(𝑥𝑃𝑖 , 𝑦𝑃𝑖 , 𝑧𝑃𝑖) = [

∇𝑈𝑖
𝑆(𝑥𝑃𝑖)

−∇𝑈𝑖
𝑆(𝑦𝑃𝑖)

−∇𝑈𝑖
𝑆(𝑧𝑃𝑖)

] ∙ 𝐷(Ψ𝐿̇)         (5) 

These integrals have the same role as integral IX in Eq. (3), 
but they are used to compensate wind drift on axes yPi and zPi by 
changing the direction of flight defined by heading and pitch an-

gles. The value of integral IX has an impact on the 𝑥𝑃𝑖-axis com-

ponent of gradient ∇𝑈𝑖
𝐴𝐷  only when the sign of integral ∫ 𝑥𝑃𝑖𝑑𝜏

𝑡

0
 

is the same as the sign of 𝑥𝑃𝑖. Otherwise, the value of IX equals 

zero, and the definition of the gradient ∇𝑈𝑖
𝐴𝐷  is identical to that of 

∇𝑈𝑖
𝑆. This rule is necessary, because integral IX should compen-

sate for wind drift as follows: its negative value should only accel-

erate the UAV when 𝑥𝑃𝑖 < 0 and its positive value should decel-
erate the UAV only when 𝑥𝑃𝑖 ≥ 0 (Fig. 3). For other cases, gra-

dient ∇𝑈𝑖
𝐴𝐷  must be the same as gradient ∇𝑈𝑖

𝑆 to prevent oscilla-
tions. Therefore, the sign of integral IX must be correlated with the 

sign of Pix , and its change switches guidance rules on axis Pix  

between ∇𝑈𝑖
𝐴𝐷  and ∇𝑈𝑖

𝑆 (Fig. 3). This happens when the UAV 
crosses the y-z plane. 

The next modifications related to the novelty of the self-
adaptive asymmetrical potential function are addressed directly to 

velocity vector field 𝑉𝑖
𝑆 from Kownacki and Ambroziak (2019). 

Velocity vector field 𝑉𝑖
𝑆 based on gradient ∇𝑈𝑖

𝑆 is given by Eq. (5) 
(Kownacki and Ambroziak, 2019). 

 

Fig. 3. Switching between gradient ∇Ui
AD and ∇Ui

S when the UAV flies behind the tracked position and then crosses the y-z plane.  

UAV, unmanned aerial vehicles 
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The definition of velocity vector field 𝑉𝑖
𝐴𝐷 applied in the self-adaptive approach is as follows: 

𝑉𝑖
𝐴𝐷(𝑥𝑃𝑖 , 𝑦𝑃𝑖 , 𝑧𝑃𝑖) =

[
 
 
 
[

∇𝑈𝑖
𝐴𝐷(𝑥𝑃𝑖)

−∇𝑈𝑖
𝐴𝐷(𝑦𝑃𝑖)

−∇𝑈𝑖
𝐴𝐷(𝑧𝑃𝑖)

] + 𝐼

]
 
 
 
∙ 𝐷(Ψ𝐿̇) =

([

|∇𝑈𝑖
𝐴𝐷(𝑥𝑃𝑖)|

−∇𝑈𝑖
𝐴𝐷(𝑦𝑃𝑖)

−∇𝑈𝑖
𝐴𝐷(𝑧𝑃𝑖)

] − [

0
𝛿𝑦 ⋅ |𝐼𝑌| ⋅ 𝑠𝑔𝑛(𝑦𝑃𝑖) ⋅ 𝑦𝑃𝑖

2

𝛿𝑧 ⋅ |𝐼𝑍| ⋅ 𝑠𝑔𝑛(𝑧𝑃𝑖) ⋅ 𝑧𝑃𝑖
2

]) ∙ [

cos(𝜀 ∙ Ψ𝐿̇) sin(𝜀 ∙ Ψ𝐿̇) 0

− sin(𝜀 ∙ Ψ𝐿
̇ ) cos(𝜀 ∙ Ψ𝐿

̇ ) 0

0 0 1

]             (6) 

where Ψ̇𝐿 – is the rate of heading angle of the tracked virtual 

point; 𝜀 – gain coefficient having the meaning of the time constant 
related to inertia of response to tracked point turns; I – compensa-
tion vector dependent on integrals of tracking errors on the y-axis 

(IY) and z-axis (IZ); and 𝛿𝑦, 𝛿𝑧 – gains of integrals IY and IZ, re-

spectively. 
Definitions of the integral values IY and IZ are given below: 

𝐼𝑌 = {∫ 𝑦𝑃𝑖𝑑𝜏
𝑡

0
 , (𝑦𝑃𝑖 ≥ 0 ∩ ∫ 𝑦𝑃𝑖𝑑𝜏

𝑡

0
≥ 0)  ∪ (𝑦𝑃𝑖 < 0 ∩ ∫ 𝑦𝑃𝑖𝑑𝜏

𝑡

0
≤ 0) 

 0
            (7) 

𝐼𝑍 = {∫ 𝑧𝑃𝑖𝑑𝜏
𝑡

0
 , (𝑧𝑃𝑖 ≥ 0 ∩ ∫ 𝑧𝑃𝑖𝑑𝜏

𝑡

0
≥ 0)  ∪ (𝑧𝑃𝑖 < 0 ∩ ∫ 𝑧𝑃𝑖𝑑𝜏

𝑡

0
≤ 0)

0
              (8) 

where zPi, yPi – are UAV coordinates (tracking errors) on axes zPi 
and yPi of frame OxPiyPizPi. 

Integrals IY and IZ modify lengths of velocity vectors 𝑉𝑖
𝐴𝐷 on 

the zPi and yPi axes, which changes both lengths and spatial orien-
tations of velocity vectors. Also, in this case, the signs of integrals 
IY and IZ must be the same as the signs of tracking errors on the 
yPi and zPi axes. Otherwise, values of these integrals should equal 
zero, and Eq. (6) becomes the same as Eq. (5), or almost the 

same when ∇𝑈𝑖
𝐴𝐷  is identical to ∇𝑈𝑖

𝑆 for IX different from zero. 
This switching prevents situations when the UAV crosses planes 
defined by axes xPi-zPi or xPi-yPi, and the sign of the corresponding 
tracking error on the yPi or zPi axis is reversed. If the integrals IY or 

IZ are non-zero values with signs opposite to tracking errors, 

velocity vector field 𝑉𝑖
𝐴𝐷 will guide the UAV in the same direction 

as the wind, and the wind drift effect will be amplified. This could 
cause position oscillations on the yPi or zPi axis. Therefore, the 
compensation should work only in the direction opposite to the 
wind (Fig. 4). 

In the next section, results of numerical simulations prove that 
the novel self-adaptive potential field approach, which uses inte-

grals IX, IY and IZ to modify gradient ∇𝑈𝑖
𝐴𝐷  and velocity vector 

field 𝑉𝑖
𝐴𝐷, effectively minimises the steady-state tracking error 

caused by the wind. 

 

Fig. 4. Switching between Vi
AD and Vi

S when the UAV flies to the left of the tracked position and then crosses the x-z plane.  

UAV - unmanned aerial vehicles 

4. NUMERICAL SIMULATIONS 

In numerical simulations, the same dynamical model of 
a fixed-wing UAV was utilised as in works of Kownacki and Am-
broziak (2017) and Kownacki and Ambroziak (2019). The UAV’s 
dynamics are defined by a set of six differential equations, namely 

Eqs (9) and (10): 
 

[
𝑢̇
𝑣̇
𝑤̇

] = [

𝑟 ⋅ 𝑣 − 𝑞 ⋅ 𝑤
𝑝 ⋅ 𝑤 − 𝑟 ⋅ 𝑢
𝑞 ⋅ 𝑢 − 𝑝 ⋅ 𝑣

] +
1

𝑚
⋅ [

𝐹𝑥

𝐹𝑦

𝐹𝑧

]            (9) 
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[
𝑝̇
𝑞̇
𝑟̇

] =

[
 
 
 
 
 
𝐼𝑥𝑧⋅(𝐼𝑥−𝐼𝑦+𝐼𝑧)

𝐼𝑥⋅𝐼𝑧−𝐼𝑥𝑧
2 ⋅ 𝑝 ⋅ 𝑞 −

𝐼𝑧(𝐼𝑧−𝐼𝑦)+𝐼𝑥𝑧
2

𝐼𝑥⋅𝐼𝑧−𝐼𝑥𝑧
2 ⋅ 𝑞 ⋅ 𝑟 +

𝐼𝑧

𝐼𝑥⋅𝐼𝑧−𝐼𝑥𝑧
2 ⋅ 𝐿 +

𝐼𝑥𝑦

𝐼𝑥⋅𝐼𝑧−𝐼𝑥𝑧
2 ⋅ 𝑁

𝐼𝑧−𝐼𝑥

𝐼𝑦
⋅ 𝑝 ⋅ 𝑟 −

𝐼𝑥𝑧

𝐼𝑦
(𝑝2 − 𝑟2) +

1

𝐼𝑦
⋅ 𝑀

𝐼𝑥(𝐼𝑥−𝐼𝑦)+𝐼𝑥𝑧
2

𝐼𝑥⋅𝐼𝑧−𝐼𝑥𝑧
2 ⋅ 𝑝 ⋅ 𝑞 −

𝐼𝑥𝑧⋅(𝐼𝑥−𝐼𝑦+𝐼𝑧)

𝐼𝑥⋅𝐼𝑧−𝐼𝑥𝑧
2 ⋅ 𝑞 ⋅ 𝑟 +

𝐼𝑥𝑧

𝐼𝑥⋅𝐼𝑧−𝐼𝑥𝑧
2 ⋅ 𝐿 +

𝐼𝑥

𝐼𝑥⋅𝐼𝑧−𝐼𝑥𝑧
2 ⋅ 𝑁]

 
 
 
 
 

             (10) 

 

where 𝐹𝑥, 𝐹𝑦 , 𝐹𝑧 – are components of the total force vector applied 

to the UAV i.e. the sum of aerodynamic forces, force of gravity, 
and the force of the propulsion system; L, M, N – moments on the 

x, y and z axis, respectively; 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 – mass moments of inertia 

around the x, y, z axes, respectively, of the UAV body frame; 𝐼𝑥𝑧  – 
product of inertia for the x – z symmetry plane; p, q, r – angular 

velocities of banking, tilt, deflection; u, v, w – linear velocities; and 
m – mass of the vehicle. 

Equations of the related kinematic model describing both posi-
tion and orientation in the global frame G are given by Ambroziak 
and Gosiewski (2015) and Kownacki and Ambroziak (2017): 

[

𝑥̇𝐺

𝑦̇𝐺

𝑧̇𝐺

] =

[
 
 
 
 cos (Θ) ⋅ cos (Ψ)

sin(ϕ) ⋅ sin(Θ) ⋅ cos(Ψ)

− cos(ϕ) ⋅ sin(Ψ)

cos(ϕ) ⋅ sin(Θ) ⋅ cos(Ψ)

+ sin(ϕ) ⋅ sin(Ψ)

cos (Θ) ⋅ sin(Ψ)
sin(ϕ) ⋅ sin(Θ) ⋅ sin(Ψ)

+ cos(ϕ) ⋅ cos(Ψ)

cos(ϕ) ⋅ sin(Θ) ⋅ sin(Ψ)

− sin(ϕ) ⋅ sin(Ψ)

− sin (Θ) sin(ϕ) ⋅ cos (Θ) cos(ϕ) ⋅ cos (Θ) ]
 
 
 
 

⋅ [
𝑢
𝑣
𝑤

]       (11) 

[
𝜙̇

Θ̇
Ψ̇

] = [

1 sin (𝜙) ⋅ 𝑡𝑎𝑛(Θ) cos (𝜙) ⋅ 𝑡𝑎𝑛(Θ)

0 cos (𝜙) −sin (𝜙)

0
sin (𝜙)

cos (Θ)

cos (𝜙)

cos (Θ)

] ⋅ [
𝑝
𝑞
𝑟
]    (12) 

where , ,  – are the orientation angles of roll, pitch and head-
ing angle, respectively; p, q, r – angular velocities of banking, tilt, 
deflection; u, v, w – linear velocities; and xG, yG, zG – coordinates 
in the G frame. 

The sum of forces applied to the body frame of a fixed-wing 
UAV is as follows (Ambroziak and Gosiewski, 2015; Kownacki 
and Ambroziak, 2017): 

𝐹 = [

𝐹𝑥

𝐹𝑦

𝐹𝑧

] = [

−𝑚𝑔 ⋅ sin (Θ)
𝑚𝑔 ⋅ cos(Θ) ⋅ sin (ϕ)

𝑚𝑔 ⋅ cos (Θ) ⋅ cos(ϕ)
] + [

𝐹𝑝

0
0

] + [

𝐹𝑥
𝑎

𝐹𝑦
𝑎

𝐹𝑧
𝑎

]       (13) 

where: mg – force of gravity, Fp – propulsion force (Eq. 12), 𝐹𝑧
𝑎– 

lifting force, 𝐹𝑥
𝑎 – drag force, 𝐹𝑦

𝑎 – lateral force. 

The force Fp generated by the propulsion system, i.e. propel-
ler and electrical engine, is modelled by the equation (Ambroziak 
and Gosiewski, 2015; Kownacki and Ambroziak, 2017): 

𝐹𝑝 =
𝐴⋅𝜌⋅[(𝑘𝑚⋅𝛿𝑡)

2−𝑉𝐴
2]

2
               (14) 

where VA – is airspeed of UAV;  – air density; km – the relation 

between throttle control signal, t and engine revolutions; and A – 
the area swept out by the propeller blade. 

The sum of aerodynamic moments and the moment generat-
ed by the propulsion system are given as follows (Ambroziak and 
Gosiewski, 2015; Kownacki and Ambroziak, 2017): 

[
𝐿
𝑀
𝑁

] = [
0

𝑀𝑝

0

] + [

𝐿𝑎

𝑀𝑎

𝑁𝑎

]=[
0

−𝑘𝑡 ⋅ (𝑘m ⋅ 𝛿𝑡)
2

0
]+[

𝐿𝑎

𝑀𝑎

𝑁𝑎

]       (15)   

where Mp – is the moment generated by the propulsion system if 
the axis of propeller rotation coincides with the x-axis of the UAV’s 
body; La – rolling moment; Ma – pitching moment; Na – yawing 

moment; km – relation between throttle control signal, t and en-
gine revolutions; and kt – coefficient of propeller torque. 

Aerodynamic moments La, Ma, Na are functions of control sur-

face deflections, respectively: a – ailerons (roll angle), e - eleva-

tor (pitch angle) and r – rudder (yaw angle). In turn, the propul-

sion force Fp is a function of throttle t. Deflections a, e and 

throttle t are outputs of lateral and longitudinal controls of the 
UAV, which are based on PID loops as shown in Fig. 5. 

 
Fig. 5. Lateral and longitudinal control of the i-th UAV based on PID 

loops. ΨDi and ΨAi – respectively, desired and actual heading; 

ϕDi and ϕAi – respectively, desired and actual roll angle; ΘDi 

and ΘAi – respectively, desired and actual pitch angle; VDi  

and VAi – respectively, desired and actual airspeed (Kownacki and 
Ambroziak, 2017). UAV - unmanned aerial vehicle 

Desired values of heading angle 𝛹𝐷𝑖, pitch angle 𝛩𝐷𝑖  and 
airspeed 𝑉𝐷𝑖 can be simply obtained from velocity vector field 

𝑉𝑖
𝐴𝐷 as given by equations (Kownacki C. and Ambroziak L., 2019; 

Kownacki C. and Ambroziak L., 2019): 

𝛹𝐷𝑖 = 𝑎𝑡𝑎𝑛2 (𝑉𝑖
𝐴𝐷(𝑦𝑃𝑖), 𝑉𝑖

𝐴𝐷(𝑥𝑃𝑖))        (16) 

𝛩𝐷𝑖 = 𝑎𝑡𝑎𝑛2 (𝑉𝑖
𝐴𝐷(𝑧𝑃𝑖), √𝑉𝑖

𝐴𝐷(𝑥𝑃𝑖)
2 + 𝑉𝑖

𝑆𝐷(𝑦𝑃𝑖)
2)     (17) 

𝑉𝐷𝑖 = √𝑉𝑖
𝐴𝐷(𝑥𝑃𝑖)

2 + 𝑉𝑖
𝐴𝐷(𝑦𝑃𝑖)

2 + 𝑉𝑖
𝐴𝐷(𝑧𝑃𝑖)

2      (18) 

To verify the effectiveness of the proposed changes in the 

novel definitions of gradient 𝑉𝑖
𝐴𝐷 and related velocity vector field 

𝑉𝑖
𝐴𝐷, numerical simulations considering two scenarios were pre-

pared. In each of them, the fixed-wing UAV follows a virtual point 
which is its desired position. Therefore, if the position tracking 
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algorithm is effective in minimising tracking errors, both flight 
paths, i.e. the flight path of the UAV and the reference trajectory of 
the virtual point, should overlap. During simulated flights, a step 
change of wind velocity is generated to observe the response of 
lateral and longitudinal controls based on the proposed self-

adaptive approach. In each scenario, the direction of the wind is 
different, which makes separate verification of lateral and longitu-
dinal guidance possible (Fig. 6). In the next section, flight paths 
and time plots of tracking errors present the results achieved. 

 

Fig. 6. Simulated scenarios of a step change of wind velocity to verify lateral and longitudinal controls of UAV. UAV - unmanned aerial vehicle 

5. RESULTS 

In each simulation, positions of the virtual tracked point and 
the starting point of the UAV overlap, and paths of the virtual point 
are designed as straight lines. Since the UAV tracks the virtual 
point and the initial airspeeds of both are zero, there should be 
inertia between the movements of the UAV and the tracked virtual 
point. In the first considered case, the direction of the simulated 
step change of wind velocity is exactly opposite to the direction of 
the virtual point’s movement. Therefore, it should increase track-
ing error on the xPi axis as steady-state tracking error, i.e. wind 

drift. In the second case, the direction of the wind is perpendicular 
to the line of the virtual point’s path. Thus, the tracking error 
should increase on the yPi axis. 

Firstly, it should be examined how the previous approach of 
AAPF is able to decrease tracking error in the steady state. To 
verify this, numerical simulations were prepared according to the 

second scenario for different values of coefficients  (0.1, 0.9),  

(0.1, 0.9) and  (0.1, 0.9) (Eq. 3), and x1, x2, y and z equal 
zero. Time plots of tracking errors on each axis are presented in 
Fig. 7. The amplitude of the step change of wind velocity at 

t  100 s is 1 m/s. 

 

Fig. 7. Time plots of tracking errors on axes xPi, yPi and zPi for the following values of coefficients ,  and : (1)   0.1,   0.1 and   0.1, (2)   0.9, 

  0.9 and   0.1, (3)   0.9,   0.9 and   0.9 

According to the first scenario (Fig. 6), different values of x1, 

x2 were used to observe minimisation of the tracking error on the 

xPi axis as the result of a step change of wind velocity at t  200 s. 
on this axis with an amplitude equal to 1 m/s. Simulation results 
are given in Fig. 8. 

In Fig. 6, it can be seen that time plots of Ex are independent 

from the values of x1 (Fig. 8.1–8.4). This is because this coeffi-

cient regulates the gain of integral IX for xPi  0, when the UAV is 

flying behind the virtual point, and thus xPi  0 and IX  0. This is 

in accordance with the assumptions of guidance rules defined by 
Eqs (3), (4), (6), (7) and (8). On the other hand, in Figs. 8.5–8.8, a 
decrement of tracking error Ex can be observed for higher values 

of x2. A side effect of the action of integral IX is transient and 
quickly fading oscillations whose frequency grows with the value 

of x2. Amplitudes of these oscillations are less than 1 m, and their 
durations are less than 25 s. Therefore, they should not have a 
significant impact on the effectiveness of flight guidance based on 
the proposed approach. 
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In the second scenario, where the wind direction is perpendic-
ular to the simulated flight path of the virtual point, only coefficient 

y matters, because it is related to integral IY. The rest of the 

parameters are as follows: ,  and  remain the same, x1  1 

and x2  1. In Figs. 9.1–9.4, time plots of tracking errors are 

presented for a value of y equal to, respectively, 0, 0.1, 1 and 5. 

 

Fig. 8. Time plots of tracking errors on axes xPi, yPi and zPi for the following values of coefficients x1, x2, y and z: (1) x1  0, x2  0.1, y  0 and z  0, 

(2) x1  0.5, x2  0.1, y  0 and z  0, (3) x1  1, x2  0.1, y  0 and z  0, (4) x1  1.5, x2  0.1, y  0 and z  0, (5) x1  1, x2  0, 

y  0 and z  0, (6) x1  1, x2  0.1, y  0 and z  0, (7) x1  1, x2  1, y  0 and z  0, (8) x1  1, x2  10, y  0 and z  0 

 

1) 

2) 

3) 

4) 

6) 

7) 

8) 
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Fig. 9. Time plots of tracking errors on axes xPi, yPi and zPi for the following values of coefficients x1, x2, y and z: x1  1, x2  1,  

(1) y  0, (2) y  0.1, (3) y  1, (4) y  5 

Based on Fig. 7, it is possible to conclude that  and  im-
prove guidance dynamics on the xPi axis by increasing the slope 

of potential function 𝑈𝑖
𝑆 on both sides of the yPi – zPi plane. Oscil-

lations of tracking error on axis xPi are caused by inertia in position 

tracking at instant t  0 and UAV guidance switching between 
acceleration and deceleration zones separated by the yPi – zPi 
plane. The frequency of this oscillation increases with the incre-
ment of the potential function’s slope caused by higher values of 

 and . As would be expected, values of  and  have no effect 
on tracking error Ey on the yPi axis. This tracking error can be 

decreased by increasing the value of , which can be observed by 
comparing Figs 7 (2 and 3). However, Ey still does not decrease 
over time; thus, it should be considered as steady-state tracking 
error caused by wind drift. 

Next, non-zero values of x1, x2, y, and z are applied in the 

novel definitions of gradient ∇𝑈𝑖
𝐴𝐷  and velocity vector field 𝑉𝑖

𝐴𝐷 

to include integrals IX, IY, and IZ. Values of ,  and  are constant 
and are, respectively, 0.9, 0.9 and 0.1. 

Also, in this case, a value of y higher than 0 guarantees that 
tracking error Ey decreases over time. The magnitude of decre-

ment increases with the value of y, but simultaneously, the ampli-
tude and frequency of oscillations of tracking error Ey also grow. 
However, these oscillations are still transient and fast-fading, and 
they have no bearing on the effectiveness of the approach to 
minimisation of tracking error in the steady state. 

6. CONCLUSION 

Both methods based on AAPFs have significance to the prob-
lem of position tracking by nonholonomic vehicles such as fixed-
wing UAVs. They improve the stability and the precision of posi-
tion tracking during manoeuvres. However, they do not prevent 
against position tracking errors in the steady state, caused by 

wind drift in windy environments. Therefore, definitions of the 
gradient of the asymmetrical potential function and the VVF 
should be dependent on integrals of tracking errors, as in the 
definition of a proportional–integral–derivative controller, where 
the integral is used to minimise steady-state errors. As presented, 
numerical simulation results confirm that such modification will 
allow for reduction of tracking errors asymptotically in the steady 
state. This is because of the fact that integrals of tracking errors 
are variable gain coefficients which modify the gradient according 
to the growth of the steady-state error, in a manner identical to the 
increment of the potential function’s slope. This effect is presented 
in Figs 8 and 9, where time plots of tracking errors for different 

values of integrals’ coefficients, x1, x2, and y, compare the 
effectiveness of tracking error minimisation. Increasing values of 
these integrals’ coefficients amplify the magnitude of decrement 
but simultaneously increase the frequency of oscillation. Fortu-
nately, oscillations are quickly suppressed by inertia in the un-
manned aerial vehicle’s dynamics. Therefore, integrals’ coeffi-

cients, x1, x2, y, and z, as well as coefficients of the potential 

function, ,  and , should be precisely adjusted to the dynamics 
specific to each considered fixed-wing UAVs’ construction. 

In summary, the novel self-adaptive approach to the asym-
metrical potential function makes the position tracking problem 
more resistant to external disturbances in windy environments, 
which is crucial for fixed-wing UAVs. This is not possible through 
the usage of other methods of path planning, which are based on 
symmetrical APFs. 
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