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Abstract: The subject under consideration finds manifold applications across various disciplines, including biological, industrial,  
and environmental sectors. Therefore, this study aims to analytically investigate the onset of convective instability in a dusty ferromagnetic 
fluid layer, influenced by magnetic field-dependent viscosity and fluid-permeable magnetically active boundaries, when subjected to a uniform 
transverse magnetic field. The eigenvalue problem is formulated through the utilization of linear stability theory followed by normal mode 
analysis. To address this problem, a single-term Galerkin method is employed, followed by a numerical calculation of the critical magnetic 
Rayleigh number. It is investigated numerically and graphically that (𝑁𝑐)𝐹𝑟𝑒𝑒 ≤ (𝑁𝑐)𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑙𝑒 ≤ (𝑁𝑐)𝑅𝑖𝑔𝑖𝑑.  It has been observed that 

as the dust particle parameter ℎ1 increase, the critical Rayleigh number decreases, indicating the destabilizing nature of ℎ1 On the other 

hand, the viscosity parameter 𝛿 and magnetic susceptibility 𝜒 and permeability parameter 𝐷𝑎𝑠 demonstrate a stabilizing effect  

on the system. Initially, measure of nonlinearity of magnetization 𝑀3 exhibits a destabilizing effect, but beyond a certain threshold, it switches 
to a stabilizing effect within the system. 
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1. INTRODUCTION 

Ferrofluids are unique types of fluids that exhibit both fluidic and 
magnetic properties. They are composed of stable colloidal sus-
pensions of single-domain ferromagnetic or ferrimagnetic nanopar-
ticles dispersed in a suitable liquid medium. The magnetic particles 
typically consist of ferromagnetic metals such as iron, nickel, and 
cobalt, or ferrimagnetic oxides like magnetite (𝐹𝑒3𝑂4) and spinel-
type ferrites. Common carrier liquids include water, ethylene glycol, 
and various oils. The specific combination of magnetic particles and 
carrier fluid is chosen based on the intended application of the fer-
rofluid. Ferrofluids are widely used in sealing, damping, heat trans-
fer, bearings, and sensors. They act as coolants in systems like 
loudspeakers and transformers, and enhance heat transfer in de-
vices such as heat exchangers. Their use in exclusion seals helps 
protect sensitive components, making them valuable in robotics, 
textiles, electronics, and machinery [1, 2].  

 Due to their vast practical applications, researchers have con-
ducted numerous experimental and theoretical studies on ferroflu-
ids. These studies cover areas such as synthesis and characteri-
zation, heat transfer and thermal properties, theoretical modelling 
and simulation, and industrial applications [3, 4, 5]. Discussing the 
thermal stability of ferrofluids is equally important as examining 
their other properties. Understanding thermal stability ensures that 
ferrofluids can be effectively and safely utilized in current and future 
technologies. 

 Thermal stability of ferrofluid in the existence of a vertical mag-
netic field has been investigated by Finlayson [6]. Schwab et al. 
examined experimentally the Finlayson's problem [7]. Thermal 

stability of ferrofluid depends upon many factors such as density of 
ferrofluid, gravity acting on ferrofluid, medium of ferrofluid, Coriolis 
force on ferrofluid and hydrodynamic boundary conditions of fer-
rofluid. The influence of viscosity variation with magnetic field on 
thermal convection of ferrofluid has been explored by Sunil et al. 
[8]. whereas the viscosity variation with temperature field on ther-
mal convection of ferrofluid for general boundary conditions has 
been investigated by Dhiman and Sharma [9, 10]. The porous me-
dium plays a crucial role in directing geophysically detectable liq-
uids into specific zones for imaging, controlled placement, or chem-
ical treatment. Hence, analyzing the thermal stability of ferrofluids 
within a saturated porous layer is equally important. Vaidyanathan 
et al. [11] explored thermoconvective instability in a ferromagnetic 
fluid saturating a porous medium under the influence of a vertical 
magnetic field. Since rotation can significantly affect the thermal 
stability of a fluid layer, Venkatasubramanian and Kaloni [12] ex-
amined the impact of rotation on thermo-convective instability in a 
ferrofluid layer. Many authors have made remarkable contributions 
to exploring the impact of various parameters on ferrofluid convec-
tion (see references [13, 14, 15, 16, 17]). 

 There are many practical situations where ferrofluids may con-
tain suspended particles. For instance, in industrial settings, fer-
rofluids are sometimes used as lubricants for machinery, particu-
larly in high-precision equipment like bearings, seals, and pumps. 
However, in such environments, it is common for the ferrofluid to 
become contaminated with suspended particles. Therefore, study-
ing ferrofluids with dust particles is equally important. Thermal sta-
bility of ferrofluid in the existence of dust particles is studied by Sunil 
et al. [18]. Sunil et al. [19] explored the impact of viscosity variation 
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with magnetic field on the thermal convection of dusty ferrofluids for 
the case of free-free boundaries. Sunil et al. [20] conducted a the-
oretical study on how magnetic field-dependent (MFD) viscosity in-
fluences thermal convection in a ferromagnetic fluid saturated po-
rous medium containing dust particles. Sharma and Kumar [21] car-
ried out a theoretical analysis of the combined influence of MFD 
viscosity and rotation on ferroconvection in a dusty fluid exposed to 
a uniform transverse magnetic field, whereas Kumar et al. [22] ex-
plored the impact of viscosity variation with temperature on the ther-
mal convection of dusty ferrofluids of permeable boundaries. For a 
detailed understanding of thermal convection in dusty ferrofluids 
under various effects, one may refer to references [23, 24, 25, 26]. 
For further insights into related studies involving fluid systems con-
taining dust particles and their significant effects, readers are re-
ferred to references [27, 28, 29, 30, 31]. 

 The thermal stability of the liquid is determined by the thermal 
and hydrodynamic conditions at the surfaces that border it. In past 
works, fluid boundaries have been mainly either free-free or rigid-
rigid. However, in many cases boundaries are neither purely free-
free nor purely rigid-rigid. For instance, porous structures are used 
in cooling systems of electronic devices so as to facilitate ferrofluid 
movement and controlled heat transfer. Magnetic seals in rotating 
machinery consist of field-permeable membranes that maintain 
fluid position while allowing for fluid exchange and pressure fluctu-
ations. For example, targeted drug delivery and hyperthermia treat-
ment require ferrofluids to pass through semi-permeable biological 
membranes. Also heat exchangers, magnetic field-controlled filtra-
tion systems, ferrofluid-based microfluidic devices and aerospace 
thermal management all rely on boundary permeability for effective 
thermal convection. Siddheshwar [32] has documented the convec-
tive instability of ferromagnetic fluids confined by fluid-permeable 
and magnetically active boundaries. More recently, Nanjundappa 
et al. [26] explored penetrative ferro-thermal convection (FTC) 
driven by internal heating in a porous layer saturated with ferrofluid, 
considering various temperature, velocity, and magnetic potential 
boundary conditions. Additionally, Surya [33] examined convective 
instability of a liquid layer with permeable boundaries under the in-
fluence of variable gravitational force.  

 To the best of our knowledge, no prior studies have examined 
the combined effects of viscosity variation with magnetic fields and 
fluid-permeable magnetic boundary surfaces on the thermal con-
vection of ferrofluids containing dust particles. This research is mo-
tivated by this gap in the literature. The study will provide different 
insights on how thermal convection can be optimized for various 
engineering applications such as electronics cooling, aerospace 
systems, biomedical technologies and environmental engineering 
through dust particles effects on it and variation of viscosity with 
magnetic field and fluid – permeable magnetic boundaries. 

2. RESEARCH METHODOLOGY 

The analytical investigation of convective instability in a dusty 
ferromagnetic fluid layer considering magnetic field-dependent vi-
scosity and fluid-permeable, magnetically active boundaries under 
a uniform transverse magnetic field follows a structured approach 
aligned with the objectives of the study. A brief overview of the met-
hodology is presented below as per the defined sections.  

2.1. Fundamental Equations of the Problem  

This phase includes recognizing and developing the core 

equations that govern the problem. These equations may be based 
on physical laws or derived from mathematical models.  

2.2. Basic State  

After establishing the fundamental equations, the system's ba-
sic state is identified. The system is considered to be in this basic 
state when there is no fluid motion in its initial condition. 

2.3. Perturbation                                                                                                                  

Perturbations refer to small disturbances or deviations from the 
basic state that are introduced into the system. These disturbances 
enable the examination of the system's stability and behavior under 
different conditions [34].                                                                                                     

2.4. Linear Analysis                                                                                           

To identify the instability threshold for an dusty ferromagnetic 
fluid during thermal convection, linear analysis specifically using 
normal mode analysis as described by Chandrasekhar [34] to 
create an eigenvalue problem offers valuable insights into the 
fundamental physics of thermal convection. 

2.5. Normal Mode Analysis                                                                                      

Normal mode analysis is utilized to reduce the system of partial 
differential equations into an eigenvalue problem, which allows for 
a systematic examination of the stability of the system.  

2.6. Non-dimensionalize the System of Equations                                               

The governing equations of the system are non-dimensional-
ized to simplify the analysis and eliminate any reliance on specific 
units of measurement. Scaling factors are used to non-dimension-
alize the perturbed equations. 

2.7.  Method of solution 

The Galerkin method is employed to solve the eigenvalue prob-
lem, transforming it into a solvable system of algebraic equations. 
This method approximates the solution by selecting trial functions 
that satisfy the boundary conditions. 

2.8. Result and discussion 

Identify the effects of different parameters on the systems for 
different bounding surfaces, and interpret the results graphically. 

3. MATHEMATICAL MODELLING 

Consider a static layer of ferromagnetic fluid with a finite vertical 
thickness 𝑑 and an infinite horizontal extent, heated from below, 
and containing dust particles. This fluid layer is subjected to a uni-
form vertical magnetic field 𝑯 and experiences a gravitational force 
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represented by 𝘨 and this system is confined between two horizon-
tal fluid-permeable magnetic boundaries (as depicted in  
Fig. 1)  

 
Fig. 1. Geometrical Configuration 

We assume the fluid is incompressible, electrically non-conduc-
tive, and has a viscosity depend upon the magnetic field, expressed 
as 𝜇 = 𝜇1( 𝛿. 𝑩 + 1) [35]. The fluid's viscosity when the mag-
netic field is zero is 𝜇1, the isotropic coefficient of viscosity change 

is 𝛿, and the magnetic induction is represented by 𝑩. For the model 
described, the governing equations under the Boussinesq approxi-
mation are provided by [6, 19]:  

∇ ⋅ 𝒒 = 0 ,                         (1) 

𝜌0 (𝒒 ⋅ 𝛻 +
𝜕

𝜕𝑡
) 𝒒 − 𝜌𝘨 + 𝛻𝑝 = 𝜇𝛻2𝒒 + 𝛻 ⋅ (𝑯𝑩) −

                                                           𝐾𝑁𝑑(𝒒 − 𝒒𝒅) ,  (2) 

𝑚𝑁𝑑𝐶𝑝𝑡 (
𝜕

𝜕𝑡
+ 𝒒𝒅 ⋅ 𝛻) 𝑇 − [𝜇0𝑯 ⋅ (

𝜕𝑴

𝜕𝑇
)

𝐻,𝑉
− 𝜌0𝐶𝐻,𝑉]

𝐷𝑇

𝐷𝑡
+

𝜇0𝑇 (
𝜕𝑴

𝜕𝑇
)

𝐻,𝑉
⋅

𝐷𝑯

𝐷𝑡
= 𝐾1𝛻2𝑇.  (3) 

The equation of state for density is 

𝜌 = 𝜌0[1 + 𝛼(𝑇0 − 𝑇)] , (4) 

In the aforementioned equations: 𝒒 represents the ferrofluid's 
velocity, 𝒒𝑑 indicates the dust particles' velocity, 𝑝 pertains to pres-
sure, 𝜌 corresponds to density, 𝑁𝑑 signifies the number density of 

the dust particles, 𝑀 stands for magnetization, 𝐵 represents mag-
netic induction,  𝑇 is the temperature,  𝐶𝐻,𝑉 characterizes the spe-

cific heat at constant magnetic field and volume, 𝐶𝑝𝑡 indicates the 

specific heat of dust particles, 𝐾1 designates the thermal conduc-
tivity, 𝛼 represents the coefficient of thermal expansion, and 𝐾 =
6𝜋𝜇𝑟 signifies the Stokes drag coefficient, where 𝑟 represents the 
radius of the dust particle. Additionally, 𝜌0 and 𝜇0 correspond to 
the density and magnetic permeability at the reference tempera-
ture. 

 The buoyant force acting on the dust particles is neglected [18, 
23, 26]. It is further assumed that the spacing between the particles 
is much larger than their diameters, allowing inter-particle interac-
tions to be disregarded. The influence of gravity, pressure, and vis-
cous forces on the particles is assumed to be negligibly small and 
is thus omitted from consideration. An additional force term with this 
opposite direction must be included in the particles' equation of mo-
tion, because the force applied by the ferrofluid on the dust particles 
is equal in magnitude but opposite in direction to the force exerted 
by the dust particles on the ferrofluid. Let 𝑚𝑁𝑑 denote the mass of 
dust particles per unit volume; the motion and continuity equations 
for the dust particles, under these assumptions, are given as follows 

[19, 22]: 

𝑚𝑁𝑑 (𝒒𝒅 ⋅ 𝛻 +
𝜕

𝜕𝑡
) 𝒒𝒅 = −𝑁𝑑𝐾(𝒒𝒅 − 𝒒), (5) 

𝛻 ⋅ (𝑁𝑑𝒒𝒅) +
𝜕𝑁𝑑

𝜕𝑡
= 0. (6) 

Due to assumption that fluid is electrically non-conductive, the 
equations of Maxwell in the case where displacement current is ab-
sent for a non-conductive fluid can be stated as follows [6]: 

𝛻 × 𝑯 = 0,   𝛻 ⋅ 𝑩 = 0,  (7) 

and  

𝑩 = 𝜇0(𝑴 + 𝑯).                       (8) 

Thus, from equations (7) and (8), we get  

∇ ⋅ (𝑴 + 𝑯) = 0.   (9) 

The alignment of magnetization is governed by both the mag-
netic field's strength and temperature, resulting in the following re-
lationship 

𝑴 = (
𝑯

𝐻
) 𝑀(𝐻, 𝑇),                     (10) 

and 

𝑀 = 𝑀0 + 𝐾2(𝑇0 − 𝑇) − 𝜒(𝐻0 − 𝐻),                                (11) 

Where 𝑀0 is the magnetization when temperature is 𝑇0 and 
magnetic field is 𝐻0, while  

𝐾2 = − (
𝜕𝑴

𝜕𝑇
)

𝑇0,   𝐻0

, 𝜒 = (
𝜕𝑴

𝜕𝐻
)

𝑇0,   𝐻0

    

represents the pyromagnetic coefficient and magnetic susceptibility 
respectively. 

Equations (1) to (11) are solved for zero flow at base state and 
thus the basic state solutions are given by 

𝜌 = 𝜌𝑏(𝑧), 𝑝 = 𝑝{𝑏}(𝑧),  𝒒𝒅 = (𝒒𝒅)𝑏 = 𝟎 ,  𝒒 = 𝒒𝑏 = 𝟎, 

𝑇 = 𝑇0 − 𝛽𝑧 = 𝑇𝑏(𝑧),  𝛽 =
𝑇0−𝑇1

𝑑
,    (𝑁𝑑)𝑏 = 𝑁𝑑 = 𝑁0,        

𝐻0 + 𝑀0 = 𝐻0
𝑒𝑥𝑡, 𝑯𝑏 = (𝐻0 −

𝛽𝐾2

𝜒+1
𝑧) �̂�,  𝑴𝑏 = (𝑀0 +

𝛽𝐾2

𝜒+1
𝑧) �̂�.                                                                                   (12)   

Further following Finlayson [6] perturbations are added to initial 
basic state as:    

𝜌 = 𝜌𝑏(𝑧) + 𝜌′, 𝑝 = 𝑝𝑏(𝑧) + 𝑝′,  𝒒𝒅 = (𝒒𝒅)𝑏 + 𝒒𝒅
′,  𝒒 =

𝒒𝑏 + 𝒒′ ,  𝑇 = 𝑇𝑏(𝑧) + 𝜃′,   𝑁𝑑 = (𝑁𝑑)𝑏 + 𝑁′,  𝑴 =
𝑴𝑏(𝑧) + 𝑴′,   𝑯 = 𝑯𝑏(𝑧) + 𝑯′.                                          (13)  

Where the variables 

 𝜌′, 𝑝′, 𝒒′ = (𝑢′ , 𝑣′ , 𝑤′ ), 𝒒𝒅
′ = (𝑙′ , 𝑟′ , 𝑠′ ),  𝜃′, 𝑴′ and 𝑯′  

represent infinitesimal disturbances in density, pressure, velocity of 
ferrofluid, velocity of dust particles, magnetic field intensity, mag-
netization and temperature, respectively. 

 On introducing equation (13) into equations (1) to (11) and ap-
plying the basic state solutions, we derive the linearized perturba-
tion equations in the form. 

𝜕𝑢′

𝜕𝑥
+

𝜕𝑣′

𝜕𝑦
+

𝜕𝑤′

𝜕𝑧
= 0,                                         (14) 

[𝐿0𝜌0  + 𝑚𝑁0] 
𝜕𝑢′

𝜕𝑡
=  𝐿0  [𝜇0(𝑀0 + 𝐻0) 

𝜕𝐻1
′

𝜕𝑧
  +  𝜇1 [1 +

𝛿𝜇0(𝑀0 + 𝐻0)]𝛻2 𝑢′  −
𝜕𝑝′

𝜕𝑥
],                       (15) 
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 [𝐿0𝜌0  + 𝑚𝑁0] 
𝜕𝑣′

𝜕𝑡
=  𝐿0  [μ0(M0 + H0) 

∂H2
′

∂z
  +  μ1 [1 +

δμ0(M0 + H0)]∇2 v′  −
∂p′

∂y
],                       (16) 

 [𝐿0𝜌0  + 𝑚𝑁0] 
𝜕𝑤′

𝜕𝑡
=  𝐿0  [μ0(M0 + H0) 

∂H3
′

∂z
  +  μ1 [1 +

δμ0(M0 + H0)]∇2 w′  −
∂p′

∂z
+ ρ0gαθ′ − μ0K2βH3

′ +

μ0K2
2β

(χ+1)
θ′],                                                                 (17) 

𝐿0 [(𝜌𝐶1 + 𝑁0𝑚𝐶𝑝𝑡)
𝜕𝜃′

𝜕𝑡
− 𝐾1𝛻2𝜃′ − 𝜇0𝑇0𝐾2

𝜕

𝜕𝑡
(

𝜕𝜙′

𝜕𝑧
)] =

𝐿0 [𝛽 (𝜌𝐶1 −
𝜇0𝑇0𝐾2

2

𝜒+1
) 𝑤′] + 𝑁0𝑚𝛽𝐶𝑝𝑡𝑤′,                    (18) 

Here    𝜌𝐶1 = 𝜇0𝐻0𝐾2 + 𝜌0𝐶𝐻,𝑉 , 𝐿0 = (
𝑚

𝐾

𝜕

𝜕𝑡
+ 1) ,   

also,  

𝜕

𝜕𝑥
(𝑀1

′ + 𝐻1
′) +

𝜕

𝜕𝑦
(𝑀2

′ + 𝐻2
′ ) +

𝜕

𝜕𝑧
(𝑀3

′ + 𝐻3
′ ) =

0,   𝛻𝜙′ = 𝑯′,                                           (19) 

where 𝜙′ is the perturbed magnetic potential, and  

𝑀3
′ + 𝐻3

′ = 𝐻3
′ (𝜒 + 1) − 𝐾2 𝜃′, 𝑀𝑖

′ + 𝐻𝑖
′ = (1 +

𝑀0

𝐻0
) 𝐻𝑖

′(𝑖 = 1,2). 

Here we have considered that β𝑑𝐾2 << (χ + 1)𝐻0. (Finlay-
son [6]). 

Now, eliminating 𝑝′, 𝑢′ , 𝑣′  between equations (15) -(17) using 
equation (14), we get 

[𝐿0𝜌0  + 𝑚𝑁0] 
𝜕

𝜕𝑡
(𝛻2𝑤′) − 𝐿0𝜇1 [1 + 𝛿𝜇0(𝑀0 +

𝐻0)]𝛻4 𝑤′ = 𝐿0 (𝜌0𝑔𝛼 +
𝜇0𝐾2

2𝛽

(𝜒+1)
) (𝛻1

2𝜃′) −

𝐿0𝜇0𝐾2𝛽𝛻1
2 𝜕𝜙′

𝜕𝑧
,                      (21) 

where 

𝛻1
2 =

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
, 𝛻2 =  𝛻1

2 + 
𝜕2

𝜕𝑧2
. 

Also, from equations (19) and (20), we have  

(𝜒 + 1)
𝜕2𝜙′

𝜕𝑧2 + (
𝑀0

𝐻0
+ 1) 𝛻1

2𝜙′ −
𝜕𝜃′

𝜕𝑧
𝐾2 = 0.                   (22) 

Now, following normal mode analysis assuming that all quanti-
ties characterizing the perturbation depend on 𝑡, 𝑥, 𝑦,  and 𝑧 in the 
form 

(𝑤′, 𝜙′, 𝜃′)(𝑡, 𝑥, 𝑦, 𝑧) =

𝑒[𝑛𝑡+𝜄(𝑥𝑘𝑥1+𝑦𝑘𝑦1)][𝑤⋆(𝑧), 𝜙⋆(𝑧), 𝜃⋆(𝑧)].                     (23) 

In this context, we have wave numbers represented as 𝑘𝑥1 and 

𝑘𝑦1 for the 𝑥 and 𝑦 directions, respectively. Additionally, 𝑛 denotes 

the growth rate, and 𝑘 is defined as the magnitude of the resultant 
wave number, calculated as the square root of the sum of the 
squares of 𝑘𝑥1 and 𝑘𝑦1 and using non dimensional parameters: 

𝑧⋆ =
𝑧

𝑑
, 𝐷⋆ =

∂

∂𝑧⋆
, 𝑎 = 𝑘𝑑,  ω =

𝑛𝑑2

ν
,  𝑤⋆ =

𝑑

ν
𝑤⋆, 𝑡⋆ =

ν

𝑑2 𝑡, 

θ⋆ =
𝐾1𝑎√𝑅

ρ𝐶1β𝑑ν
θ⋆, ϕ⋆ =

(χ+1)𝐾1𝑎√𝑅

𝑘2ρ𝐶1βν𝑑2 ϕ⋆, 𝑘1⋆
=

𝑘1

𝑑2 , 𝛿⋆ =

𝛿𝜇0𝐻(𝜒 + 1),   ν =
μ1

ρ0
,  𝑃𝑟 =

νρ𝐶1

𝐾1
,  τ =

𝑚ν

𝐾𝑑2 , 𝑅 =
𝑔αβ𝑑4ρ𝐶1

𝐾1ν
 , 

𝑀1 =
μ0𝐾2

2β

(χ+1)αρ0𝑔
,  𝑀2 =

μ0𝑇0𝐾2
2

(χ+1)ρ𝐶1
,  𝑀3 =

1+
𝑀0
𝐻0

(χ+1)
, 𝑓 =

𝑚𝑁0

ρ0
, 

𝐿0⋆
= (τ

∂

∂𝑡⋆
+ 1) , ℎ =

𝑚𝑁0𝐶𝑝𝑡

ρ𝐶1
 ,  

in equations (18), (21) and (22), we obtained the non-dimensional 
linearised equations as  

(𝐷2 − 𝑎2)[(𝜔𝜏 + 1){(𝑀3𝛿 + 1)(𝐷2 − 𝑎2) − 𝜔} −

𝑓𝜔]𝑤 = (𝜔𝜏 + 1)[(𝑀1 + 1)𝜃 − 𝑀1𝐷𝜙]𝑎√𝑅,                  (24) 

(𝜔𝜏 + 1){𝑃𝑟𝑀2𝜔𝐷𝜙 + (𝐷2 − 𝑎2 − (1 + ℎ)𝜔𝑃𝑟)𝜃} =

−[ℎ + (𝜔𝜏 + 1)(1 − 𝑀2)]𝑎√𝑅𝑤,                    (25) 

(𝐷2 − 𝑎2𝑀3)𝜙 = 𝐷𝜃.                      (26) 

A real independent variable 𝑧 in the range 0 ≤  𝑧 ≤ 1 is 
used in the aforementioned equations. Here, the square of the 
wave number is represented by 𝑎2, while differentiation with re-

spect to 𝑧 is shown by 𝐷 =
𝑑

𝑑𝑧
. The variables 𝑃𝑟 , 𝑅, 𝑀1, 𝑀2 and 

𝑀3  correspond to the Prandtl number, Rayleigh number, magnetic 
number, a non-dimensional parameter, and measure of nonlinearity 
of the magnetization parameter, respectively. The parameters ℎ 
and 𝑓 are related to dust particles. The complex constant  𝜔 =
𝜔𝑟 + 𝜄𝜔𝑖 signifies the complex growth rate, where 𝜔𝑖 and 𝜔𝑟 are 
real constants. The variables, 𝑤(𝑧) = 𝑤𝑖(𝑧)𝜄 + 𝑤𝑟(𝑧) , 
𝜙 (𝑧) =  𝜙𝑖(𝑧)𝜄 + 𝜙𝑟(𝑧), and 𝜃 (𝑧) =  𝜃𝑖(𝑧)𝜄 + 𝜃𝑟(𝑧) , are 

all complex functions of the real variable 𝑧, while 𝑤𝑟, 𝑤𝑖, ϕ𝑟, ϕ𝑖 ,  
θr, θ𝑖,  are the real components of these functions. 

From a physical standpoint, equations (24) to (26) define an 
eigenvalue problem for 𝑅, which governs ferromagnetic convection 
within a ferrofluid layer containing dust particles. In these equa-
tions, 𝑤 represents the vertical velocity, 𝜃 indicates the tempera-

ture, and 𝜙 denotes the amplitude of the magnetic potential. Since 

𝑀2 is of a very small magnitude (on the order of 10−6) [6], its in-
fluence is negligible for further analysis, allowing equation (25) to 
be simplified as. 

(𝜔𝜏 + 1)(𝐷2 − 𝑎2 − 𝜔𝑃𝑟(1 + ℎ))𝜃 = −[1 + 𝜔𝜏 +

ℎ]𝑎√𝑅𝑤.                         (27) 

For the scenario of stationary convection, setting 𝜔 = 0  sim-
plifies the eigenvalue problem into the following form: 

(1 + 𝑀3𝛿)(𝐷4 − 2𝑎2𝐷2 + 𝑎4)𝑤 = [(𝑀1 + 1)𝜃 −

𝑀1𝐷𝜙]𝑎√𝑅,                          (28)           

(−𝑎2 + 𝐷2)𝜃 = −[ℎ + 1]𝑎√𝑅𝑤,                     (29) 

(𝐷2 − 𝑎2𝑀3)𝜙 = 𝐷𝜃.                      (30) 

Since the ferrofluid layer is confined between two thermally 
conducting and fluid- permeable magnetic surfaces. Hence, we use 
the following fluid-permeable magnetic boundaries condition as 
proposed by ([6, 32, 36, 37]): 

−(𝐷𝑎𝑠)𝐷𝑤 + 𝐷2𝑤 = 𝑤 = 0, at 𝑧 = 0 and (𝐷𝑎𝑠)𝐷𝑤 +
𝐷2𝑤 = 𝑤 = 0, at 𝑧 = 1, 

−𝑎𝜙 + (1 + 𝜒)𝐷𝜙 at 𝑧 = 0 and 𝑎𝜙 + (1 + 𝜒)𝐷𝜙 at 𝑧 = 1, 

𝜃 = 0 at 𝑧 = 0 and 𝑧 = 1,                                                     (31) 

where 𝐷𝑎𝑠 is the slip-D'Arcy number and 𝜒 is the magnetic sus-
ceptibility.   
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4. MATHEMATICAL ANALYSIS 

The non-dimensionalized linear ODEs (28) to (30) along with 
boundary conditions (31) form the eigen value problem with 𝑅 as 
Rayleigh number. To determine the Rayleigh number for the given 
boundary conditions (31), we will employ a single-term Galerkin 
method. Let's consider a single term in the expansions of 𝑤, 𝜃, and 

𝜙 as follows:  

𝑤 = 𝐴11𝑤1(𝑧),  𝜃 = 𝐵11 𝜃1(𝑧), 𝜙 =  𝐶11𝜙1(𝑧) ,            (32) 

Here, 𝐴11, 𝐵11, and 𝐶11 are constants, and 𝑤1(𝑧),   𝜃1(𝑧),  
and 𝜙1(𝑧) are appropriately selected trial functions that satisfy the 
necessary boundary conditions (31). By replacing 𝑤, 𝜃, and 𝜙 with 
their respective expressions in equations (28) to (30), then multiply-
ing each resulting equation by 𝑤1(𝑧),   𝜃1(𝑧),  and 𝜙1(𝑧) accord-
ingly, and integrating by parts the necessary number of times while 
applying the boundary conditions, we derive three homogeneous 
equations in 𝐴11, 𝐵11, and 𝐶11 . The coefficients of these equa-
tions are expressed as definite integrals. This system can be ex-
pressed in matrix form as follows: 

(

(𝑀3𝛿 + 1)𝐴2 −𝑎√𝑅(1 + 𝑀1)𝐴3 𝑎√𝑅𝑀1𝐴5

(1 + ℎ1)𝑎√𝑅𝐴3 −𝐴1 0
0 𝐴4 𝐴6

) (
𝐴11

𝐵11

𝐶11

) =

(
0
0
0

)   

were,  

𝐴1 = ∫ [(𝐷θ)2 + 𝑎2θ2]
1

0
 𝑑𝑧,  

𝐴2 = ∫ [(𝐷2𝑤)2 + 2𝑎2(𝐷𝑤)2 + 𝑎4(𝑤)2]
1

0
 𝑑𝑧 +

(𝐷𝑎𝑠) [(𝐷𝑤(0))
2

+ (𝐷𝑤(1))
2

],  

𝐴3 = ∫ 𝑤
1

0
𝜃 𝑑𝑧,  

𝐴4 = ∫ 𝜙𝐷𝜃 
1

0
𝑑𝑧,  

𝐴5 = ∫ 𝑤𝐷𝜙 
1

0
𝑑𝑧,  

𝐴6 = ∫ [(𝐷𝜙)2 + 𝑎2𝑀3𝜙2]
1

0
 𝑑𝑧 +

𝑎

𝜒+1
[𝜙(0)2 + 𝜙(1)2].  

 For simplicity, the subscript 1 is omitted, and the functions 

𝑤1(𝑧),   𝜃1(𝑧),  and 𝜙1(𝑧) are henceforth denoted as 𝑤, 𝜃, and 
𝜙 respectively. 

For a non-trivial solution to occur, the determinant of the coeffi-
cient matrix must be zero. This results in the following expression, 
which establishes a first-order relationship between the Rayleigh 
number 𝑅 and the wave number 𝑎. 

𝑅 =
(𝑀3𝛿+1)𝐴1𝐴2

𝑎2(1+ℎ)𝐴3{(𝑀1+1)𝐴3+
𝑀1𝐴4𝐴5

𝐴6
}
.                    (33) 

Let us now select the following trial functions that satisfy the 
specified boundary conditions. 

𝑤 =
2

2+𝐷𝑎𝑠
𝑧 +

𝐷𝑎𝑠

2+𝐷𝑎𝑠
𝑧2 − 2𝑧3 + 𝑧4, 𝜃 = 𝑧 − 𝑧2, 𝜙 = −

1

2
+

𝑧.                      (34) 

The initially proposed trial function for the magnetic potential, 
denoted by 𝜙, does not meet the boundary conditions given in 
equation (31). To resolve this inconsistency, the boundary residual 
method, as described by Finlayson [6], is applied to the function 𝜙. 

By applying these trial functions to the integrals 𝐴1 through 𝐴6, 
we derive the following formula for Rayleigh number as 
 

𝑅 =

5880(𝑀3𝛿+1)(x+10)[
6√𝑥

1+𝜒
+12+𝑥𝑀3]

[(
4

5
+4𝑃)+(

𝑃2

30
+

𝑃

70
+

1

630
)𝑥2+2(

𝑃2

3
+

2𝑃

15
+

2

105
)𝑥]

ℎ1𝑥(3+14𝑃)

{(𝑀1+1)(3+14𝑃)(
6√𝑥

1+𝜒
+12+𝑥𝑀3) −28(1+5𝑃)𝑀1}

                    (35) 

                       

where 𝑃 =
2

2+𝐷𝑎𝑠
, ℎ1 = ℎ + 1 and  𝑥 = 𝑎2.  

Using MATLAB R2023a software, the square of the critical 
wave number  𝑥𝑐  is determined by finding the positive roots of the 

equation 
𝑑𝑅

𝑑𝑥
 =  0 . Additionally, the associated critical Rayleigh 

number 𝑅𝑐 is numerically calculated. 
Also, we have the following formula for the magnetic Rayleigh 

number 𝑁 for significantly large values of 𝑀1 derived from expres-
sion (35) utilizing Finlayson [6] analysis. 
 

𝑁 =

5880(𝑀3𝛿+1)(x+10)[
6√𝑥

1+𝜒
+12+𝑥𝑀3]

[(
4

5
+4𝑃)+(

𝑃2

30
+

𝑃

70
+

1

630
)𝑥2+2(

𝑃2

3
+

2𝑃

15
+

2

105
)𝑥]

ℎ1𝑥(3+14𝑃)

{(𝑀1+1)(3+14𝑃)(
6√𝑥

1+𝜒
+12+𝑥𝑀3) −28(1+5𝑃)𝑀1}

                   (36)

                       
which stand for the magnetic mechanism that functions when 
buoyancy effects are not present. 

5. RESULTS AND DISCUSSION 

This study explores the convective instability of a dusty ferro-
magnetic fluid, incorporating the effects of viscosity that depend on 
the magnetic field. The system is analyzed within a Rayleigh- 
Bènard configuration, where the fluid is contained between perme-
able boundaries that are also magnetically active. Additionally,the 
setup is subject to a uniform transverse magnetic field. Given the 
complexity of the boundary conditions, the Galerkin method was 
employed to calculate the critical eigenvalue. These findings can 
contribute to better control of instability in engineering systems and 
enhance the efficiency of applications where stability and precise 
thermal regulation are essential. 

 In the present analysis, the nonlinearity of the magnetization 
parameter 𝑀3 is considered to vary from 0 to 25, as suggested by 
Finlayson [6]. The MFD viscosity parameter 𝛿 ranges from 0 to 

0.09, as per the work of Prakash et al. [14]. The dust particle pa-
rameter ℎ1 is taken to vary between 1 and 9, following the sugges-
tion of Sunil et al. [18]. Furthermore, the magnetic susceptibility of 
boundaries 𝜒 and the permeability parameter of boundaries 𝐷𝑎𝑠 

are assumed to range from 100 to 106 and from 0 to ∞, respec-
tively, as suggested by Siddheshwar [32]. 

First, we discuss the accuracy of the results presented in this 
study. For the case of ordinary fluid, in the absence of a magnetic 
parameter (𝑀1 = 0 and 𝑀3 = 0),  𝜒 → ∞ and without dust par-

ticles (ℎ1 = 1), the critical Rayleigh number (𝑅𝑐) and wave num-

ber (𝑎𝑐
2) are found to be 𝑅𝑐 = 664.5251 at 𝑎𝑐

2  =  4.9594 for 
free boundaries. This closely matches to 𝑅𝑐  =  657.551 at 

𝑎𝑐
2  =  4.9328 as obtained by Surya [33]. Additionally, for rigid 

boundaries, we have 𝑅𝑐  =  1750.0  at 𝑎𝑐
2  =  9.7127, which 

closely matches 𝑅𝑐  =  1715.070 at 𝑎𝑐
2  =  9.6969, as reported 

by Surya [33]. 
Also, Tab. 1 provide a qualitative comparison of the numerical 

results computed at 𝜒 → ∞, without dust particle (ℎ1 = 1), 𝑀3 =
10, 𝑀1 = 1,5 for the case of free-free and rigid-rigid boundaries 
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with Dhiman [10].  The table clearly shows that our results align 
exceptionally well with previously published data, confirming the ac-
curacy of our numerical procedure. 
 
Tab. 1.  Comparison of Values from the Present Study with Existing 

Studies 

 
Free-Free 

 

                Rigid-Rigid 

Present 
Study 

Dhiman 
[10] 

Present 
Study 

Dhiman [10] 

𝑅𝑐(𝑎𝑐
2) 𝑅𝑐(𝑎𝑐

2) 𝑅𝑐(𝑎𝑐
2) 𝑅𝑐(𝑎𝑐

2) 

𝑀1

= 1 
360.0088 
(5.4644) 

 

342.52 
(5.174) 

913.1268 
(10.2291) 

889.15 
(9.921) 

𝑀1

= 5 

126.5677 
(5.8260) 

116.49 
(5.319) 

313.1211 
(10.5816) 

299.56 
(10.06) 

 

Tab. 2.  Variation of critical magnetic Rayleigh numbers 𝑁𝑐 with 𝑀3 , 𝜒   

              and 𝛿 at fixed ℎ1 = 3 and 𝐷𝑎𝑠 = 1 

 

𝒉𝟏 = 𝟑 Critical Magnetic Rayleigh Number   𝑵𝒄(𝒂𝒄
𝟐) at 

𝜒 𝑀3 𝛿
=  0.01 

𝛿 
=  0.03 

𝛿 
=  0.05 

𝛿 
=  0.07 

𝛿 
=  0.09 

 

 

 

 

 

 

 

1 

1 
412.4400 
(7.7909) 

420.6071 
(7.7909) 

428.7742 
(7.7909) 

436.9413 
(7.7909) 

445.1085 
(7.7909) 

5 
333.0876 
(7.0576) 

364.8102 
(7.0576) 

396.5328 
(7.0576) 

428.2554 
(7.0576) 

459.9781 
(7.0576) 

10 
321.2218 
(6.6092) 

379.6257 
(6.6092) 

438.0297 
(6.6092) 

496.4336 
(6.6092) 

554.8376 
(6.6092) 

15 
323.9978 
(6.3847) 

408.5190 
(6.3847) 

493.0402 
(6.3847) 

577.5614 
(6.3847) 

662.0825 
(6.3847) 

20 
331.3287 
(6.2498) 

441.7716 
(6.2498) 

552.2144 
(6.2498) 

662.6573 
(6.2498) 

773.1002 
(6.2498) 

 

 

 

 

 

 

 

10 

1 
494.4820 
(8.9375) 

504.2737 
(8.9375) 

514.0654 
(8.9375) 

523.8572 
(8.9375) 

533.6489 
(8.9375) 

5 
342.8150 
(7.3292) 

375.4640 
(7.3292) 

408.1130 
(7.3292) 

440.7621 
(7.3292) 

473.4111 
(7.3292) 

10 
324.5245 
(6.7147) 

383.5290 
(6.7147) 

442.5334 
(6.7147) 

501.5379 
(6.7147) 

560.5423 
(6.7147) 

15 
325.7133 
(6.4415) 

410.6820 
(6.4415) 

495.6507 
(6.4415) 

580.6194 
(6.4415) 

665.5881 
(6.4415) 

20 
332.4015 
(6.2855) 

443.2020 
(6.2855) 

554.0025 
(6.2855) 

664.8030 
(6.2855) 

775.6035 
(6.2855) 

 

 

 

 

103 

1 
525.1702 
(9.3988) 

535.5696 
(9.3988) 

545.9690 
(9.3988) 

556.3685 
(9.3988) 

566.7679 
(9.3988) 

5 
345.3312 
(7.4019) 

378.2199 
(7.4019) 

411.1086 
(7.4019) 

443.9972 
(7.4019) 

476.8859 
(7.4019) 

10 
325.3216 
(6.7407) 

384.4710 
(6.7407) 

443.6204 
(6.7407) 

502.7697 
(6.7407) 

561.9191 
(6.7407) 

15 
326.1164 
(6.4551) 

411.1902 
(6.4551) 

496.2641 
(6.4551) 

581.3379 
(6.4551) 

666.4118 
(6.4551) 

20 
332.6499 
(6.2938) 

443.5332 
(6.2938) 

554.4166 
(6.2938) 

665.2999 
(6.2938) 

776.1832 
(6.2938) 

 

 

 

 

 

105 

1 
525.5497 
(9.4046) 

535.9567 
(9.4046) 

546.3636 
(9.4046) 

556.7705 
(9.4046) 

567.1774 
(9.4046) 

5 
345.3597 
(7.4027) 

378.2512 
(7.4027) 

411.1426 
(7.4027) 

444.0340 
(7.4027) 

476.9254 
(7.4027) 

10 
325.3305 
(6.7410) 

384.4815 
(6.7410) 

443.6325 
(6.7410) 

502.7835 
(6.7410) 

561.9345 
(6.7410) 

15 
326.1209 
(6.4552) 

411.1959 
(6.4552) 

496.2709 
(6.4552) 

581.3459 
(6.4552) 

666.4209 
(6.4552) 

20 
332.6527 
(6.2939) 

443.5369 
(6.2939) 

554.4212 
(6.2939) 

665.3054 
(6.2939) 

776.1896 
(6.2939) 

 

Tab. 2 presented the numerical values of critical magnetic Ray-
leigh number (𝑁𝑐) and square of critical wave number (𝑎𝑐

2) for dif-
ferent combination of 𝛿, 𝑀3, 𝜒 at fixed ℎ1=3 and 𝐷𝑎𝑠 = 1. Tab. 4 
presented the numerical values of critical magnetic Rayleigh num-
ber (𝑁𝑐) and square of critical wave number (𝑎𝑐

2) for different com-
bination of ℎ1, 𝐷𝑎𝑠 and 𝑀3 at fixed 𝛿=0.03 and 𝜒 = 10. 

Fig. 2 depict the variation of critical magnetic Rayleigh numbers 
𝑁𝑐  versus 𝜒 with different values of 𝑀3 and fixed values of 𝛿, ℎ1 
and 𝐷𝑎𝑠. From Fig. 2  and numerical values of  critical magnetic 

Rayleigh numbers 𝑁𝑐 presented in Tab. 3 we can observe that  crit-
ical magnetic Rayleigh numbers increases for increasing values of 
𝜒, which yields that 𝜒 has stabilizing effect on the system. This sta-

bilizing effect of 𝜒 directly depend upon 𝑀3, 𝜒 has strong stabiliz-
ing effect for smaller values of 𝑀3 as compare to larger values of 

𝑀3 . Also from Tab.3  we can observe that the critical wave number 
increases as 𝜒 increases which indicate that 𝜒 reduces the size of 
convection cell. 

Fig.3 depict the variation of critical magnetic Rayleigh numbers 
𝑁𝑐 versus 𝐷𝑎𝑠 with different values of 𝛿 and fixed values of 𝑀3, 
ℎ1 and 𝜒. From Fig. 3 and numerical values of  critical magnetic 

Rayleigh numbers 𝑁𝑐 presented in Tab. 4 we can observe that  crit-
ical magnetic Rayleigh numbers increases for increasing values of 
𝐷𝑎𝑠, which yields that 𝐷𝑎𝑠 has stabilizing effect on the system. 

Also we can conclude that  (𝑁𝑐)𝑭𝒓𝒆𝒆 ≤ (𝑁𝑐)𝑷𝒆𝒓𝒎𝒆𝒂𝒃𝒍𝒆 ≤
(𝑁𝑐)𝑹𝒊𝒈𝒊𝒅. Because  (𝑁𝑐)𝑭𝒓𝒆𝒆 and  (𝑁𝑐)𝑹𝒊𝒈𝒊𝒅 can be acquired 

from  (𝑁𝑐)𝑷𝒆𝒓𝒎𝒆𝒂𝒃𝒍𝒆 in the limit 𝐷𝑎𝑠 → 0 and ∞ respectively. 
Therefore the equality sign in   (𝑁𝑐)𝑭𝒓𝒆𝒆 ≤ (𝑁𝑐)𝑷𝒆𝒓𝒎𝒆𝒂𝒃𝒍𝒆 ≤
(𝑁𝑐)𝑹𝒊𝒈𝒊𝒅 is understandable. This analysis effectively demon-

strates the connection between the results for free-free and rigid-
rigid boundary conditions. This behavior arises because free 
boundaries impose minimal resistance to fluid motion near the sur-
faces, allowing the temperature gradient to drive convection more 
easily. As a result, the fluid becomes more responsive to instabili-
ties, leading to a lower critical magnetic Rayleigh number and an 
earlier onset of convection compared to the case with rigid bound-
aries. Further, it is evident from Tab.4 that the critical wave number 
increases as 𝐷𝑎𝑠increases which indicate that 𝐷𝑎𝑠 reduces the 
size of convection cell. 

Fig. 4 depict the variation of critical magnetic Rayleigh numbers 
𝑁𝑐 versus 𝛿 with different values of 𝑀3  and fixed values of 𝜒, ℎ1 
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and 𝐷𝑎𝑠. From Fig. 3, Fig. 4, Fig. 5, Fig.7  and numerical values of  
critical magnetic Rayleigh numbers 𝑁𝑐 presented in Tab.3  we can 
observe that  critical magnetic Rayleigh numbers increases for in-
creasing values of 𝛿, which yields that 𝛿 has stabilizing effect on 
the system. This is consistent with the physical understanding that 
higher viscosity suppresses disturbances and restricts fluid move-
ment, resulting in a delayed onset of convection. Also, it is noted 
from table Tab.3  that the critical wave number has no influence of 
MFD viscosity 𝛿, i.e. size of convection cell is independent of MFD 

viscosity 𝛿. 
 

Tab. 3.  Variation of critical magnetic Rayleigh numbers 𝑁𝑐 with ℎ1,  
𝑀3  and 𝐷𝑎ₛ at fixed 𝜒 = 10 and 𝛿 = 0.03 

 

𝝌 = 𝟏𝟎 Critical Magnetic Rayleigh Number   𝑵𝒄(𝒂𝒄
𝟐) at 

𝑀3 ℎ1 𝐷𝑎ₛ = 0 𝐷𝑎ₛ
= 10 

𝐷𝑎ₛ
= 102 

𝐷𝑎ₛ
= 103 

𝐷𝑎ₛ
= 105 

 

3 

1 1058.2 
(7.1019) 

1713.5 
(10.3132) 

2257.1 
(11.8650) 

2371.8 
(12.1002) 

2385.8 
(12.1272) 

3 352.7195 
(7.1019) 

571.1730 
(10.3132) 

752.3706 
(11.8650) 

790.5888 
(12.1002) 

795.2814 
(12.1272) 

5 211.6317 
(7.1019) 

342.7038 
(10.3132) 

451.4224 
(11.8650) 

474.3533 
(12.1002) 

477.1689 
(12.1272) 

7 151.1655 
(7.1019) 

244.7884 
(10.3132) 

322.4445 
(11.8650) 

338.8238 
(12.1002) 

340.8349 
(12.1272) 

9 117.5732 
(7.1019) 

190.3910 
(10.3132) 

250.7902 
(11.8650) 

263.5296 
(12.1002) 

265.0938 
(12.1272) 

 

5 

1 998.5998 
(6.5835) 

1660.7 
(9.6886) 

2210.0 
(11.1916) 

2325.7 
(11.4193) 

2339.9 
(11.4454) 

3 332.8666 
(6.5835) 

553.5690 
(9.6886) 

736.6527 
(11.1916) 

775.2371 
(11.4193) 

779.9737 
(11.4454) 

5 199.7200 
(6.5835) 

332.1414 
(9.6886) 

441.9916 
(11.1916) 

465.1422 
(11.4193) 

467.9842 
(11.4454) 

7 142.6571 
(6.5835) 

237.2439 
(9.6886) 

315.7083 
(11.1916) 

332.2445 
(11.4193) 

334.2744 
(11.4454) 

9 110.9555 
(6.5835) 

184.5230 
(9.6886) 

245.5509 
(11.1916) 

258.4124 
(11.4193) 

259.9912 
(11.4454) 

 

10 

1 1010.8 
(5.9857) 

1734.0 
(9.0216) 

2332.5 
(10.4899) 

2458.4 
(10.7120) 

2473.8 
(10.7375) 

3 336.9392 
(5.9857) 

578.0082 
(9.0216) 

777.4880 
(10.4899) 

819.4643 
(10.7120) 

824.6157 
(10.7375) 

5 202.1635 
(5.9857) 

346.8049 
(9.0216) 

466.4928 
(10.4899) 

491.6786 
(10.7120) 

494.7694 
(10.7375) 

7 144.4025 
(5.9857) 

247.7178 
(9.0216) 

333.2092 
(10.4899) 

351.1990 
(10.7120) 

353.4067 
(10.7375) 

9 112.3131 
(5.9857) 

192.6694 
(9.0216) 

259.1627 
(10.4899) 

273.1548 
(10.7120) 

274.8719 
(10.7375) 

15 

1 1077.7 
(5.7151) 

1875.3 
(8.7376) 

2534.0 
(10.1969) 

2672.5 
(10.4175) 

2689.5 
(10.4428) 

3 359.2290 
(5.7151) 

625.0951 
(8.7376) 

844.6717 
(10.1969) 

890.8388 
(10.4175) 

896.5038 
(10.4428) 

5 215.5374 
(5.7151) 

375.0570 
(8.7376) 

506.8030 
(10.1969) 

534.5033 
(10.4175) 

537.9023 
(10.4428) 

7 153.9553 
(5.7151) 

267.8979 
(8.7376) 

362.0022 
(10.1969) 

381.7881 
(10.4175) 

384.2159 
(10.4428) 

9 119.7430 
(5.7151) 

208.3650 
(8.7376) 

281.5572 
(10.1969) 

296.9463 
(10.4175) 

298.8346 
(10.4428) 

The behavior of the critical magnetic Rayleigh number 𝑁𝑐 as a 
function of 𝑀3  is illustrated in Fig. 6 for several values of 𝜒, while 

keeping 𝑀3, ℎ1 and 𝛿 constant. Similarly, Fig. 7 depicts the rela-
tionship between 𝑁𝑐 and 𝑀3  for different values of 𝛿, with ℎ1,  𝑀3, 

and 𝜒 held fixed. The critical magnetic Rayleigh number 𝑁𝑐 initially 
decreases for increasing values of 𝑀3, but after a certain value of 
𝑀3, it increases for increasing values of 𝑀3, as shown by Fig. 2, 

Fig. 4, Fig. 6, Fig. 7 and Tab. 2 as well as Tab. 3. This destabilizing 
or stabilizing effect of 𝑀3  varies upon the value of 𝛿. The destabi-
lizing effect range of 𝑀3  is larger for small values of 𝛿  than it is at 

large values of 𝛿. From Tab. 2 and Tab. 3  it is observed that critical 
wave number reduces with raise in 𝑀3 which means that 𝑀3  in-
creases the size of convection cell.  

 

Fig. 2. Graph between 𝑁𝑐vs 𝜒 at 𝛿 = 0.05, ℎ1 = 3 and 𝐷𝑎𝑠 = 1 

 

Fig. 3. Graph between 𝑁𝑐 vs 𝐷𝑎𝑠 at ℎ1=3, 𝜒 = 10 and 𝑀3 = 5 

 

Fig. 4. Graph between 𝑁𝑐 vs 𝛿 at 𝜒 = 10, 𝐷𝑎𝑠 = 1 and ℎ1 = 3 

The behavior of the critical magnetic Rayleigh number 𝑁𝑐 as a 
function of dust particles parameter ℎ1 is illustrated in Fig. 5 for 
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several values of 𝛿, while keeping  ℎ1, 𝑀3,  and 𝜒 constant. From 
Fig. 2 and numerical values of  critical magnetic Rayleigh numbers 
𝑁𝑐 presented in table Tab. 2  we can observe that  critical magnetic 

Rayleigh numbers decreases for increasing values of ℎ1, which 
shows that ℎ1 has destabilizing effect on the system as the overall 
heat capacity of the fluid increases due to the additional contribu-
tion from the dust particles. Moreover Tab. 2 demonstrates that the 
critical wave number does not depend on the parameter ℎ1 of dust 
particles, meaning that the size of the convection cell is not affected 
by dust particles parameter ℎ1. 

 

Fig. 5. Graph between 𝑁𝑐 vs ℎ1 at 𝐷𝑎𝑠 = 10, 𝜒 = 10 and 𝑀3 = 5 

 

Fig. 6. Graph between 𝑁𝑐 vs 𝑀3 at 𝛿 = 0.03, 𝐷𝑎𝑠 = 1 and ℎ1 = 3 

 

Fig. 7. Graph between 𝑁𝑐 vs 𝑀3 at 𝜒 = 1, 𝐷𝑎𝑠 = 1 and ℎ1 = 3 

6. CONCLUSION 

For a Rayleigh-Bénard  situation between fluid-permeable, 
magnetic boundaries, we investigate the impact of dust particles 
and viscosity variation with magnetic field on the convective insta-
bility of a ferro magnetic fluid layer using the single term Galerkin 
technique for stationary mode of convection. The main conclusion 
from our research can be summarized as follows: 

− The parameters of fluid permeable, magnetic boundaries and 
MFD viscosity parameter delay the initiation of onset of convec-
tion which indicate their stabilizing effect. 

− Dust particles parameter ℎ1 initiate the initiation of onset of con-
vection which indicate their destabilizing effect. 

− Measure of nonlinearity of magnetization 𝑀3 exhibits a desta-
bilizing effect, but beyond a certain threshold, it switches to a 
stabilizing effect within the system. 

− The size of cells formed at the initiation of convection narrows 
with a raise in the parameter of permeable magnetic bounda-
ries. 

− The size of cells formed at the initiation of convection widens 
with a raise in the measure of nonlinearity of magnetization 𝑀3. 

− The dust particles parameter and  MFD viscosity has no effect 
on the size of cell formed at the initiation of convection. 
These discoveries advance our knowledge of the variables af-

fecting convection of ferrofluid and offer useful data for a number of 
disciplines, including fluid dynamics and geophysics. Additional in-
vestigation in this field may clarify our understanding of convection 
phenomena and examine the practical consequences of these re-
sults. 

Nomenclature  

Symbol Explanation 

𝑑 Depth of the ferromagnetic fluid layer (𝑚) 

𝑡 Time variable (𝑠) 

𝑇 Temperature (𝐾) 

𝑇₀, 𝑇₁ Reference temperatures at 𝑧 =  0 and 

𝑧 =  𝑑 respectively (𝐾) 

𝑟 Radius of a dust particle (𝑚) 

𝑚 Mass of a dust particle (𝑘𝑔) 

𝑁𝑑 Number density of dust particles 

(particles/𝑚³) 

𝑁ʼ Disturbance to number density of dust 

particles (particles/𝑚³) 

𝐶𝑝𝑡 Heat capacity of dust particles (𝑘𝐽/𝑚³𝐾) 

𝐶𝐻,𝑉 Specific heat at constant magnetic field and 

volume (𝑘𝐽/𝑚³𝐾) 

𝐾1 Thermal conductivity (
𝑊

𝑚𝐾
) 

𝐾2 Pyromagnetic coefficient = −𝜕𝑀/
𝜕𝑇 𝑎𝑡 (𝑇₀, 𝐻₀) (𝐴/𝑚𝐾) 

𝐾 Stokes drag coefficient (𝑘𝑔/𝑠) 

𝐷𝑎𝑠 Darcy number accounting for velocity slip 

𝑝 Fluid pressure (𝑝𝑠𝑖) 

𝑝′ Pressure perturbation (𝑝𝑠𝑖) 

𝒒 Velocity of the ferrofluid (𝑚/𝑠) 

𝒒′ =  (𝑢′ , 𝑣′ , 𝑤′) Velocity perturbation of the fluid (𝑚/𝑠) 

𝒒𝒅 Dust particle velocity (𝑚/𝑠) 

𝒒𝒅
′ = (𝑙′ , 𝑟′ , 𝑠′ ),   Dust velocity disturbance (𝑚/𝑠) 
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𝘨 Gravitational acceleration,  

𝘨 =  (0, 0, −𝑔) (𝑚/𝑠²) 

𝐷/𝐷𝑡 Convective (material) derivative (𝑠⁻¹) 

𝑘𝑥1, 𝑘𝑦1 Horizontal wave numbers in 𝑥 and 𝑦 

directions (𝑚⁻¹) 

𝑘 Overall wave number, 𝑘 =  √(𝑘𝑥1² +
 𝑘𝑦1²) (𝑚⁻¹) 

�̂� Unit vector in the vertical (𝑧) direction 

𝑯 Magnetic field vector (𝐴/𝑚) 

𝐻, 𝐻0, 𝐻𝑒𝑥𝑡 Magnitude of field, reference field, and 
external magnetic field (𝐴/𝑚) 

𝑯′ Magnetic field perturbation (𝐴/𝑚) 

𝑩 Magnetic flux density (𝑇) 

𝐵 Magnitude of magnetic induction (𝑇) 

𝑴 Magnetization (𝐴/𝑚) 

𝑴′ Magnetization disturbance (𝐴/𝑚) 

𝑀₀ Magnetization at (𝐻₀, 𝑇₀) (𝐴/𝑚) 

𝑏 Subscript indicating base (equilibrium) state 

Greek Symbols 

𝛼 Thermal expansion coefficient (𝐾⁻¹) 

𝛽 Constant thermal gradient |𝑑𝑇/𝑑𝑧| (𝐾/𝑚) 

𝜈 Kinematic viscosity (𝑚²/𝑠) 

𝜇 Dynamic viscosity (𝑘𝑔/𝑚 · 𝑠) 

𝜇₁ Dynamic viscosity under ambient magnetic 
field (𝑘𝑔/𝑚 · 𝑠) 

𝜇₀ Magnetic permeability of vacuum (𝐻/𝑚) 

𝜌 Fluid density (𝑘𝑔/𝑚³) 

𝜌₀ Reference density at 𝑇₀ (𝑘𝑔/𝑚³) 

𝜌′ Density perturbation (𝑘𝑔/𝑚³) 

𝜃′ Temperature fluctuation (𝐾) 

𝜔 Rate of growth of disturbances (𝑠⁻¹) 

𝜒 Magnetic susceptibility =  𝜕𝑀/𝜕𝐻 at 

(𝑇₀, 𝐻₀) 

𝛻 Gradient (del) operator (𝑚⁻¹) 

𝜙′ Perturbation in magnetic scalar potential (𝐴) 
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