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Abstract: In this study, the article uses a finite element method based on Chebyshev polynomials to calculate the natural frequencies  
of functionally graded sandwich (FGS) plates with hard-core (HC) or soft-core (SC) resting on an elastic foundation. Chebyshev polynomials 
are a series of orthogonal polynomials defined recursively, and the value of them belongs to the range [-1, 1] as well as vanishes at Gauss 
points. More clearly, the novelty of this article is to use the high-order shape functions that satisfy the interpolation condition at the points 
based on Chebyshev polynomials to build the flat quadrilateral element for analysis of FGS plates. On the other hand, these plates are 
composed of two functionally graded skins and a hard or soft core. The elastic foundation with a two-parameter as a spring stiffness (𝟏) 

and a shear layer stiffness (𝟐) are used. Comparative examples are presented to validate the effectiveness of the current approach. 
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1. INTRODUCTION 

Nowadays, sandwich plates are common and important com-
ponents of engineering structures consisting of two skins integrated 
with a core. These structures stand out for their outstanding bend-
ing stiffness, low mass density, efficient noise cancellation, and 
thermal insulation. They could be widely applied in many fields of 
engineering and defense technology. However, they also exhibit 
shortcomings, such as susceptibility to damage due to stress con-
centration or material discontinuities. Therefore, studying their me-
chanical behavior is necessary and has practical significance in en-
gineering. Some typical deformation theories proposed and applied 
to analyze sandwich structures are the first-order shear defor-
mation theory [1-3], the higher-order shear deformation theory [4-
7], or the quasi-3D theory [8, 9], and many refined theories [10-17]. 
Furthermore, readers can find some results on sandwich structure 
analysis as well as composite structures in available documents 
[15-24]. For example, in the document [1], the authors presented 
analytical solutions for free vibration analysis of moderately thick 
rectangular plates, which were composed of functionally graded 
materials and supported by either Winkler or Pasternak elastic 
foundations. Based on the first-order shear deformation plate the-
ory, the analysis procedure solved the exact equations of motion 
and captured the fundamental frequencies of the functionally 
graded rectangular plates resting on an elastic foundation. Theo-
retical formulation, Navier's solutions of rectangular plates, and fi-
nite element models based on the third-order shear deformation 
plate theory were presented in [2] for the analysis of through-thick-
ness functionally graded plates. A refined trigonometric higher-or-
der plate theory as in [3] was presented for bending analysis of 
simply supported functionally graded ceramic-metal sandwich 
plates. The effects of transverse shear strains as well as the 

transverse normal strain were taken into account. The number of 
unknown functions was only four, as opposed to six or more in the 
case of other shear and normal deformation theories. A general 
third-order plate theory that accounts for geometric nonlinearity and 
two constituent material variations through the plate thickness (i.e., 
functionally graded plates) was presented using the dynamic ver-
sion of the principle of virtual displacements. The formulation was 
based on power-law variation of the material through the thickness 
and the von Kármán nonlinear strains. The governing equations of 
motion derived herein for a general third-order theory with geomet-
ric nonlinearity and material gradation through the thickness were 
specialized to the existing classical and shear deformation plate 
theories in the literature. Analysis of functionally graded material 
plates was studied using higher-order shear deformation theory 
with some special modifications in conjunction with finite element 
models [4-7]. Furthermore, the vibrational or thermomechanical 
bending behaviors of functionally graded sandwich plates were also 
presented in the documents [8-10]. Quasi-3D plate theories consid-
ering shear and normal deformations were incorporated to estimate 
the final results. In the papers [11, 12], the bending and the free 
flexural vibration behavior of sandwich functionally graded material 
plates were investigated based on higher-order structural theory. 
This theory accounted for the realistic variation of the displace-
ments through the thickness. A multi-layered shell formulation was 
developed in the paper [13] based on a layerwise deformation the-
ory within the framework of isogeometric analysis. The high-order 
smoothness of non-uniform rational B-splines offered the oppor-
tunity to capture the structural deformation efficiently in a rotation-
free manner. The derivation also followed a layerwise theory, which 
assumed a separate displacement field expansion within each layer 
and considered the transverse displacement component as C0-
continuous at layer interfaces, thus resulting in a layerwise 
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continuous transverse strain state. In the paper [14], the authors 
derived a higher-order shear deformation theory for modeling func-
tionally graded plates accounting for extensibility in the thickness 
direction. The explicit governing equations and boundary conditions 
were obtained using the principle of virtual displacements under 
Carrera’s Unified Formulation. The static and eigenproblems were 
solved by collocation with radial basis functions.  

In recent years, the study of structures embedded in founda-
tions has drawn a lot of attention amongst researchers. To express 
the interaction between foundation and plate, various hypotheses 
of foundation models have been introduced [15]. The oldest and 
simplest hypothesis of elastic medium models, which has only one 
coefficient substrate reaction, is known as Winkler elastic founda-
tion [16]. Despite its ease of implementation, the Winkler model is 
defective in providing continuity in the foundation due to separate 
springs [17]. This hypothesis was improved by the Pasternak model 
[18] via adding a shear layer over springs. The Pasternak model, 
including two-parameter substrate (spring and shear layer), is 
widely used to explain the mechanical interactions of soft plates 
with different distributions of material properties. In the Kerr foun-
dation [19], nonconcentrated reactions do not occur due to an up-
per spring layer. It means that, in the Kerr model, a shear layer is 
surrounded by upper and lower spring layers. From there one can 
see more related documents. The thermodynamic behavior of func-
tionally graded sandwich plates resting on Winkler/Pasternak/Kerr 
foundations with various boundary conditions was studied in [20] by 
using a refined 2D plate theory. The displacement field contained 
undetermined integral forms and involved only four unknowns to 
derive. The plate was considered to be subject to a time-harmonic 
sinusoidal temperature field across its thickness. Three types of 
foundations were studied. Each was described by a mathematical 
model. Different boundary conditions were used to study the ther-
modynamic behavior of sandwich plates on elastic foundations. 
These models gave an incredible concurrence with the accessible 
literature. The research [21] investigated the free vibration analysis 
of advanced composite plates, such as functionally graded plates 
resting on two-parameter elastic foundations, using a hybrid quasi-
3D (trigonometric as well as polynomial) higher-order shear defor-
mation theory. The theory, which did not require a shear correction 
factor, accounted for shear deformation and thickness stretching 
effects by a sinusoidal and parabolic variation of all displacements 
across the thickness. The governing equations of motion for the 
plates were derived from Hamilton's principle. The closed-form so-
lutions were obtained by using the Navier technique, and natural 
frequencies were found for simply supported plates by solving the 
results of eigenvalue problems. The research [22] analyzed the nat-
ural frequencies of the imperfect functionally graded sandwich plate 
comprised of porous face sheets made of functionally graded ma-
terials and an isotropic homogeneous core resting on the elastic 
foundation. To accomplish this, the material characteristics were 
taken to be changed incessantly along the thickness direction 
based on the volume fraction of constituents expressed by the mod-
ified rule of the mixture, which included porosity volume fraction 
with three diverse kinds of porosity distribution models. Further-
more, to describe the two-parameter elastic foundation's response 
on the imperfect plates, the medium was supposed to be linear, 
homogenous, and isotropic, and it had been modeled using the 
Winkler-Pasternak model. Moreover, in the kinematic relationship 
of the imperfect plate resting on the Winkler-Pasternak foundation, 
third-order shear deformation theory was used, and the motion 
equations were set up employing Hamilton's principle. A buckling 
analysis of functionally graded plates of a complex form resting on 

an elastic foundation and subjected to an in-plane nonuniform load-
ing was performed by the R-functions method as in [23]. The math-
ematical formulation of the problem was presented within the 
framework of the classical laminate plate theory. The approach pro-
posed and the software developed consider the heterogeneous 
subcritical state of the plates. To solve the problems, the Ritz 
method combined with the R-functions theory was used, etc. 

Another aspect: the finite element method was first introduced 
in 1960 with the basic idea of dividing the entire problem domain 
into discrete components with simple geometry. Within each ele-
ment, the representation of dependent variables is accomplished 
through shape functions. Structural analysis using the finite ele-
ment method will be more accurate with higher-order shape func-
tions. Nowadays, applying the finite element method to structural 
analysis has become popular and shows outstanding benefits com-
pared to analytical methods, especially for structures with complex 
shapes and arbitrary boundary conditions. The study [24] focused 
on establishing the finite element model based on a new hyperbolic 
shear deformation theory to investigate the static bending, free vi-
bration, and buckling of the functionally graded sandwich plates 
with porosity. The novel sandwich plate consisted of one homoge-
nous ceramic core and two different functionally graded face 
sheets, which could be widely applied in many fields of engineering 
and defense technology. The discrete governing equations of mo-
tion were carried out via Hamilton’s principle and the finite element 
method. Besides, Chebyshev polynomials play a significant role in 
approximation theory. They constitute a sequence of orthogonal 
polynomials defined recursively. Their absolute value in the interval 
[-1, 1] is bounded by 1. Based on this ideal, the authors [25, 26] 
proposed a finite element method associated with Chebyshev pol-
ynomials of the first kind for the analysis of plate/shell structures. In 
this approach, Gauss points were employed to formulate the shape 
functions grounded in Chebyshev polynomials. Consequently, the 
code was introduced to overcome shear locking and eliminate spu-
rious zero energy modes. 

There are different approaches to analyzing this type of struc-
ture, and in this article, the finite element method based on Cheby-
shev polynomials is first used to study the free vibration of FGS 
plates with HC or SC resting on an elastic foundation. The reliability 
of this method is verified through numerical examples related to the 
effects of geometrical parameters, materials, and foundation. Fur-
thermore, increasing the degree of the Chebyshev polynomial will 
increase the total number of degrees of freedom of the structure, 
leading to increased computational costs. However, the survey in 
this paper shows that it is possible to control the degree of the pol-
ynomial sufficiently to obtain the required approximate results. 
Some other advantages of the proposed method, although not ex-
plicitly verified in this article, are that the obtained results are not 
affected by mesh distortion or, although the Chebyshev interpola-
tion polynomial is established in the form of the Lagrange interpo-
lation, Runge’s phenomenon [27] does not occur; therefore, it can 
be used as an original finite element method for solving PDEs with 
high accuracy. 

This article is organized as follows. The formulation is pre-
sented in Sect. 2. To highlight the reliability of the element, some 
numerical examples are thoroughly studied in Sect. 3. Finally, con-
clusions are drawn in Sect. 4. 

2. FORMULATION 

Considering rectangular FGS plates with HC or SC resting on 
an elastic foundation as shown in Fig. 1. A group of h1 – h2 – h3 
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represents the ratio of thicknesses. 
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Fig. 1. The model of an FGS plate resting on an elastic foundation 

 

The volume fraction 𝑉𝑐
(𝑖)

 of the ceramic phase of each layer 

is formulated by [3]  
+ For FGS plate with HC (FGS-HC): 

{
 
 

 
 𝑉𝑐

(1)
= (

𝑧−𝑧1

𝑧2−𝑧1
)
𝑛

𝑧 ∈ [𝑧1, 𝑧2]

𝑉𝑐
(2)
= 1 𝑧 ∈ [𝑧2, 𝑧3]

𝑉𝑐
(3)
= (

𝑧−𝑧4

𝑧3−𝑧4
)
𝑛

𝑧 ∈ [𝑧3, 𝑧4]

                                         (1) 

+ For FGS plate with SC (FGS-SC): 

{
 
 

 
 𝑉𝑐

(1)
= 1 − (

𝑧−𝑧1

𝑧2−𝑧1
)
𝑛

𝑧 ∈ [𝑧1, 𝑧2]

𝑉𝑐
(2)
= 0 𝑧 ∈ [𝑧2, 𝑧3]

𝑉𝑐
(3)
= 1 − (

𝑧−𝑧4

𝑧3−𝑧4
)
𝑛

𝑧 ∈ [𝑧3, 𝑧4]

                              (2) 

The effective material properties of FGS plates are determined 
by 

𝑀(𝑖)(𝑧) = 𝑀𝑐𝑉𝑐
(𝑖)
+𝑀𝑚(1 − 𝑉𝑐

(𝑖)
), 𝑖 = 1,2,3                      (3) 

Here 𝑀(𝑖)(𝑧) stands for the material characteristics of each 

layer. 

a) FGS-HC 

 
 
 
 

b) FGS-SC 

 
Fig. 2.   The effective elastic modulus against the thickness of 

(Al/Al2O3)_FGS_(1-2-1) plates 

 
The mechanical characteristics of the ceramic and metal are 

used in this article as Al2O3 (E = 380 GPa,  = 3800 kg/m3,  = 0.3); 

Al (E = 70 GPa,  = 2707 kg/m3,  = 0.3); and ZrO2 (E = 151 GPa, 

 = 3000 kg/m3,  = 0.3). In addition, Fig. 2 plots the effective elastic 
modulus versus the thickness of (Al/Al2O3)_FGS_(1-2-1). 

The elastic foundation is modeled with two parameters (α1, α2). 
The foundation reaction is given as a function of the deflection and 
its Laplacian. The reaction-deflection relation of this foundation is 
defined by 

ℜ = 𝛼1𝑤 − 𝛼2 (
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)                                                      (4) 

The Chebyshev polynomials as in [25, 26] is given 

𝐶𝑝(𝑥) = 𝐶𝑝(𝑐𝑜𝑠 𝜑) = 𝑐𝑜𝑠 𝑝𝜑, 𝑥 = 𝑐𝑜𝑠 𝜑 ∈ [−1,1]  (5) 

𝑐𝑜𝑠(𝑝 + 1)𝜑 = 2 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝑝𝜑 − 𝑐𝑜𝑠(𝑝 − 1)𝜑             (6) 

or 

𝐶𝑝+1(𝑥) = 2𝑥𝐶𝑝(𝑥) − 𝐶𝑝−1(𝑥), 𝑝 = 0,1,2. . .                    (7) 

The Chebyshev polynomial 𝐶𝑝(𝑥)with 𝑝 ≥ 2will equals 0 at 

the Gauss points 𝑥𝑖 

𝑥𝑖 = −𝑐𝑜𝑠[(2𝑖 − 1)𝜋/2𝑝] , 𝑖 = 1,2,3, . . .                           (8) 

The most important of ideas involves the approximation pro-
cess of an unknown function 𝑓(𝑥) by Lagrangian interpolation pol-

ynomial ℵ(𝑥) through these known points (𝑥𝑘, 𝑓(𝑥𝑘)) based on 

Chebyshev polynomials as described 

𝑓(𝑥) ≈ ℵ(𝑥) = ∑ 𝑎𝑖𝐶𝑖(𝑥) 𝑎𝑛𝑑 𝑓(𝑥𝑘) = ℵ(𝑥𝑘)
𝑝−1
𝑖=0  (9) 

On the interval [-1, 1], Chebyshev polynomials have the orthog-
onal property so the unknown coefficient 𝑎𝑖may be calculated by 

𝑎𝑖 = ∑ 𝑓(𝑥𝑘)𝐶𝑖(𝑥𝑘)/∑ 𝐶𝑖
2(𝑥𝑘)

𝑝
𝑘=1

𝑝
𝑘=1                                  (10) 

Hence 

ℵ(𝑥) = ∑ ∑ [(𝐶𝑖(𝑥𝑘)𝐶𝑖(𝑥))/∑ 𝐶𝑖
2(𝑥𝑗)

𝑝
𝑗=1 ]

𝑝−1
𝑖=0

𝑝
𝑘=1 𝑓(𝑥𝑘) (11) 

with 𝑥 = 𝑐𝑜𝑠(𝜋/2𝑝) 𝜉  

ℵ(𝜉) = ∑ 𝑁𝑘(𝜉)
𝑝
𝑘=1 𝑓(𝜉𝑘)                                                        (12) 
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𝑁1(𝜉) 

 
𝑁2(𝜉) 

 

�̃�1(𝜉, 𝜂) 

 

𝑁2(𝜉, 𝜂) 
Fig. 3. The third-order shape functions in 1D & 2D 

 
where 𝑁𝑘(𝜉) are called the 1D shape functions defined as 

𝑁𝑘(𝜉) = ∑ [
(𝐶𝑖(𝑐𝑜𝑠(𝜋/2𝑝) 𝜉𝑘)𝐶𝑖(𝑐𝑜𝑠(𝜋/2𝑝) 𝜉))/

/∑ 𝐶𝑖
2(𝑐𝑜𝑠(𝜋/2𝑝) 𝜉𝑗)

𝑝
𝑗=1

]
𝑝−1
𝑖=0  (13) 

𝜉𝑖 = −𝑐𝑜𝑠[(2𝑖 − 1)𝜋/2𝑝] / 𝑐𝑜𝑠(𝜋/2𝑝) 
𝑖 = 1,2, . . . , 𝑝                                                                      (14) 

In 2D problems, (𝜉, 𝜂) ∈ [−1,1] × [−1,1], the shape func-

tions associated with node 𝐾(𝜉𝑖 , 𝜂𝑗) 

�̃�𝐾(𝜉, 𝜂) = 𝑁𝑖(𝜉)𝑁𝑗(𝜂)                                                            (15) 

with 𝑁𝑖(𝜉) or 𝑁𝑗(𝜂)
 
is 1D p-order shape functions related to the 

set 𝜉 ∈ [−1,1] or the set 𝜂 ∈ [−1,1] respectively. Fig. 3 gives 
some third-order shapes functions related to the Chebyshev poly-
nomials in 1D space and 2D space. 

The finite element formulation related to Chebyshev polyno-
mials is established as in [25, 26]. The plate is divided by the qu-
adrilateral elements with five degrees of freedom in each node of 
an element. These components can be approximated through the 
displacement components at node K 

𝑢 = {𝑢𝑜 𝑣𝑜 𝑤𝑜 𝛽𝑥 𝛽𝑦}𝑇 = 

= ∑ �̃�𝐾(𝜉, 𝜂)

(𝑝+1)(𝑞+1)

𝐾=1

{𝑢𝑜𝐾 𝑣𝑜𝐾 𝑤𝑜𝐾 𝛽𝑥𝐾 𝛽𝑦𝐾}𝑇 = 

= 𝑁𝐾𝑑𝐾                                                                                       (16) 

with  

𝑁𝐾 = �̃�𝐾𝑑𝑖𝑎𝑔(1,1,1,1,1),  

𝑑𝐾 = {𝑢𝑜𝐾 𝑣𝑜𝐾 𝑤𝑜𝐾 𝛽𝑥𝐾 𝛽𝑦𝐾}𝑇 

are nodal displacement vector associated node K. Based on the 
first-order shear deformation theory, the kinematics of the plate is 
calculated through five displacement components  𝑢𝑜, 𝑣𝑜, 𝑤𝑜, 𝛽𝑥 

and 𝛽𝑦
 
in the mid-surface 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝛽𝑥 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝛽𝑦                                                      (17) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

with 𝑢𝑜, 𝑣𝑜, 𝑤𝑜 are three displacement components, and 𝛽𝑥 𝛽𝑦
 

are the rotations related to the x- and y- axes. The in-plane strain 
vector and the transverse shear strain vector are shown 

𝜀 = [

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
] = [

𝑢0,𝑥
𝑣0,𝑦

𝑢0,𝑦 + 𝑣0,𝑥
]

⏟        
𝜀𝑚

+ 𝑧 [

𝛽𝑥,𝑥
𝛽𝑦,𝑦

𝛽𝑥,𝑦 + 𝛽𝑦,𝑥

]

⏟        
𝜀𝑏

 (18) 

= 𝜀𝑚 + 𝑧𝜀𝑏 

𝜀𝑠 = [
𝛾𝑥𝑧
𝛾𝑦𝑧
] = [

𝛽𝑥 + 𝑤0,𝑥
𝛽𝑦 + 𝑤0,𝑦

]                                                        (19) 

The constitutive relation for functionally graded plate can be 
defined as below 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧}
 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄21 𝑄22 0 0 0
0 0 𝑄66 0 0
0 0 0 𝑄55 0
0 0 0 0 𝑄44]

 
 
 
 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

              (20) 

with the material constants are given by 
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𝑄11 = 𝑄22 = 𝐸(𝑧)/[1 − 𝜈
2(𝑧)],   

𝑄12 = 𝑄21 = 𝜈(𝑧)𝐸(𝑧)/[1 − 𝜈
2(𝑧)],                                 (21) 

𝑄44 = 𝑄55 = 𝑄66 = 𝐸(𝑧)/2[1 + 𝜈(𝑧)] 

By applying the Hamilton’s principle, the weak-form for free vi-
bration analysis can be presented by 

∫ 𝛿𝜀̄𝑇𝐷𝑏
∗

𝛺
𝜀̄𝑑𝛺 + ∫ 𝛿�̄�𝑇𝐷𝑠

∗
𝛺

�̄�𝑑𝛺 + ∫ ℜ𝑤
𝛺

𝑑𝛺   

= ∫ 𝛿𝑢𝑇𝑚�̈�
𝛺

𝑑𝛺                                                                       (22) 

where   

𝜀̄ = {𝜀𝑚, 𝜀𝑏}𝑇, �̄� = {𝜀𝑠}𝑇                                           (23) 

and 𝑚 = [
𝐼1 𝐼2
𝐼2 𝐼3

] with the mass inertia terms 𝐼𝑖(𝑖 = 1,2,3) are 

given by  

(𝐼1, 𝐼2, 𝐼3) = ∫ 𝜌(𝑧)
ℎ/2

−ℎ/2
(1, 𝑧, 𝑧2) [

1 0 0
0 1 0
0 0 1

] 𝑑𝑧                (24) 

Besides, 𝐷𝑏
∗ and 𝐷𝑠

∗, the material matrices, are written by 

𝐷𝑏
∗ = [

𝐴 𝐵
𝐵 𝐷

] , 𝐷𝑠
∗ = 𝐴𝑠                                                       (25) 

with 

(𝐴, 𝐵, 𝐷) = ∫ (1, 𝑧, 𝑧2) [

𝑄11 𝑄12 0
𝑄21 𝑄22 0
0 0 𝑄66

]
ℎ/2

−ℎ/2
𝑑𝑧,  

𝐴𝑠 =
5

6
∫ [

𝑄55 0
0 𝑄44

]
ℎ/2

−ℎ/2
𝑑𝑧                                                  (26) 

The discretized systems for free vibration analysis may be 
given as 

(𝐾 − 𝜔2𝑀)𝑑 = 0                                                                   (27) 

where 𝐾is the global stiffness matrix including the plate and elastic 
foundation, 𝑀 is the global mass matrix, respectively. Furthermore, 
the Gauss quadrature rule is taken on the integration through a set 
of (p+1)(q+1) Gauss points, in which p and q are the orders of 
𝑁𝑖(𝜉)and 𝑁𝑗(𝜂). The total numbers of Gauss points and degrees 

of freedom per each element are (p+1)(q+1) and 5(p+1)(q+1). The 
values of p and q are set to 3 for all numerical examples by following 
[16]. The BCs are given by  

Clamped (C): u0 = v0 = w0 = βx = βy = 0 at all edges.  
Simply supported (S): u0 = w0 = βx = 0 at y = 0 & y = b and v0 

= w0 = βy = 0 at x = 0 & x = a. 
In order to clarify how the proposed technique is incorporated 

into a finite element code, a numerical implementation is briefly pre-
sented as follows. 

− Discretize the domain into quadrilateral elements and form the 
matrices of node coordinates (coord) and element connections 
(nodes). 

− Declare the order p, q of the Chebyshev polynomials. The 
Gauss quadrature rule is taken on the integration through a set 
of (p+1)(q+1) Gauss points. 

− Calculate and assemble element matrices to build the system 
matrices. 

− Assign boundary conditions. 

− Solve the system of equations to obtain results. 
 
 
 

3. NUMERICAL RESULTS AND DISCUSSIONS 

The normalized parameters in this study are expressed by 

𝑘1 = 𝛼1𝑎
4/𝐷𝑚, 𝑘2 = 𝛼2𝑎

2/𝐷𝑚,   
𝐷𝑚 = 𝐸𝑚ℎ

3/12/(1 − 𝜈𝑚
2 ),  

�̄� = (
𝜔𝑎2

ℎ
)√

𝜌𝑜

𝐸𝑜
,                                                              (28) 

𝜌𝑜 = 1𝑘𝑔/𝑚
3, 𝐸𝑜 = 1𝐺𝑃𝑎  

Firstly, the free vibration analysis of thin (h = a/200) and thick 
(h = a/10) square plates with two boundary conditions, SSSS and 
CCCC, is considered. The Young’s modulus E = 200 GPa, Poisson 
ratio ν = 0.3, and mass density ρ = 8000 kg/m3 are the material 
properties. The first four normalized frequencies of these structures 

𝜔∗ = [12𝜔𝜌𝑎4(1 − 𝜈2)/(𝐸ℎ2)]1/4are presented in Table 1 
and Fig. 4. These results are also compared with other results of 
MITC4 element [28] and exact solutions [29].  

Tab. 1.  The first four normalized frequencies of square plate  
(h = a/10, a/200) 

Mode 
a/h = 10, (SSSS) 

[28] Article [29] 

1 4.403 4.366 4.37 

2 6.940 6.744 6.74 

3 6.940 6.744 6.74 

4 8.608 8.354 8.35 

Mode 
a/h = 10, (CCCC) 

[28] Article [29] 

1 5.808 5.703 5.71 

2 8.226 7.876 7.88 

3 8.226 7.876 7.88 

4 9.731 9.325 9.33 

Mode 
a/h = 200, (SSSS) 

[28] Article [29] 

1 4.481 4.443 4.443 

2 7.252 7.025 7.025 

3 7.252 7.025 7.025 

4 9.200 8.885 8.886 

Mode 
a/h = 200, (CCCC) 

[28] Article [29] 

1 6.124 5.998 5.999 

2 9.060 8.567 8.568 

3 9.060 8.567 8.568 

4 11.019 10.403 10.407 

 
Tab. 2.  The first frequency of FGM plates resting on the elastic  

foundation with n = 1 and h = a/20 

(k1, k2) 
Metho

d 
p=q 

Meshing 

4 x 4 6 x 6 8 x 8 

(100,100) 

Article 

1 0.0662 0.0510 0.0474 

2 0.0398 0.0397 0.0396 

3 0.0396 0.0396 0.0396 

4 0.0396 0.0396 0.0396 

[30]                        0.0388 

[31]                        0.0386 
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Tab. 3. The dimensionless frequencies of the FGS-HC plate resting on the elastic foundation. 

a/h n (k1, k2) 
(2-1-2) (1-1-1) (2-2-1) 

Article [32] Article [32] Article [32] 

10 

0 

(0,0) 1.29918 1.29692 1.29918 1.29692 1.29918 1.29692 

(10,10) 1.61828 1.61603 1.61828 1.61603 1.61828 1.61603 

(100,100) 3.32217 3.31161 3.32217 3.31161 3.32217 3.31161 

10 

(0,0) 0.93921 0.93742 0.95419 0.95372 0.98414 0.98239 

(10,10) 1.37299 1.37067 1.38093 1.37733 1.40154 1.39522 

(100,100) 3.30716 3.29462 3.30545 3.2805 3.30531 3.28023 

100 

0 

(0,0) 1.34067 1.34038 1.34067 1.34038 1.34067 1.34038 

(10,10) 1.65962 1.65899 1.65962 1.65899 1.65962 1.65899 

(100,100) 3.36947 3.36942 3.36947 3.36942 3.36947 3.36942 

10 

(0,0) 0.96026 0.96023 0.97591 0.97582 1.00790 1.00620 

(10,10) 1.39691 1.39670 1.40294 1.40285 1.42311 1.42192 

(100,100) 3.34844 3.34801 3.33422 3.33315 3.33346 3.33266 

 
a) Thin plate
 

 
b) Think plate 

 
Fig. 4.   The comparison of the first four normalized frequencies of  

square plate 
 
 

Secondly, consider the SSSS square (Al/Al2O3) FGM plate re-
sting on an elastic foundation. The dimensionless frequency is nor-
malized by 

𝜔∗∗ = (𝜔ℎ)√𝜌𝑏/𝐸𝑏.  

Observing that the obtained results converge at a mesh size of 
4 × 4 with the order of shape functions p = q = 3 and are in good 
agreement with those of solutions using quasi-3D theory [30] and 
third-order shear deformation theory [31], as given in Table 2. An 
error of about 2% compared to the results from quasi-3D theory is 
acceptable when using only coarse meshes. 

Next, the SSSS square (Al/ZrO2) FGS-HC plate is considered. 
The first normalized frequencies �̄� are provided in Table 3. It can 
be observed that the obtained results are completely consistent 
with the results of [32], employing a closed-form solution based on 
the hyperbolic shear deformation theory. Moreover, it is clear from 
the table that the natural frequencies are increasing with the exi-
stence of the elastic foundation. Clearly, the natural frequencies are 
increasing with the increasing values of two parameters: spring 
stiffness and shear layer stiffness. Table 3 also shows that, as the 
volume ratio of ceramic in the sandwich plate increases, the natural 
frequencies of the plate increase. 

Continuously, the dimensionless frequencies of the square 
(Al/ZrO2) FGS plates with different values of the power-law index, 
ratio of thicknesses, and BCs are listed in Table 4 and Table 5. 
From these tables, it can be seen that when the power-law index n 
increases, the frequencies of the FGS-HC plates decrease while 
the frequencies of the FGS-SC increase. The reason is that as n 
increases, the volume fraction of ceramic decreases for the FGS-
HC plate, leading to a decrease in the FGS-HC plate stiffness; so 
the frequency of the FGS plate decreases. The frequency of FGS-
HC plates with n = 0 is highest, because when n = 0, FGS-HC plates 
become homogeneous ceramic plates. On the other hand, when n 
increases, the frequencies of the FGS-SC plates increase, because 
when n increases, the volume fraction of the ceramic components 
increases, and the FGS plate stiffness increases. Besides, when n 
= 0, the FGS-SC plates become homogeneous metal plates, so the 
frequency of FGS plates is the smallest. In addition, the thicker ce-
ramic core results in a stiffer FGS-HC plate, causing the frequency 
of the FGS plate to increase. This is in contrast to the FGS-SC 
plate, when the thicker metal core leads to a softer FGS-SC plate, 
so the frequency of the FGS plates reduces. 
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Tab. 4. The dimensionless frequencies of square FGS plates with  
a/h = 15, k1 = 10, k2 = 10 

BCs Plate n 
Ratio of thicknesses 

(1-0-1) (1-1-1) (1-2-2) (1-6-1) 

SSSS 

FGS-
HC 

0 1.9543 1.9543 1.9543 1.9543 

0.5 1.5924 1.6596 1.6907 1.8175 

1 1.4114 1.5053 1.5556 1.7477 

2 1.2580 1.3579 1.4278 1.6794 

5 1.1721 1.2350 1.3213 1.6209 

10 1.1662 1.1949 1.2819 1.6067 

FGS-
SC 

0 1.1769 1.1769 1.1769 1.1769 

0.5 1.7605 1.6906 1.6537 1.4641 

1 1.8992 1.8417 1.7978 1.5740 

2 1.9714 1.9446 1.8989 1.6657 

5 1.9852 2.0037 1.9611 1.7343 

10 1.9733 2.0155 1.9776 1.7504 

SSCC 

FGS-
HC 

0 2.5957 2.5957 2.5957 2.5957 

0.5 2.0944 2.1903 2.2334 2.4092 

1 1.8388 1.9751 2.0455 2.3131 

2 1.6161 1.7658 1.8655 2.2194 

5 1.4846 1.5889 1.7125 2.1385 

10 1.4699 1.5283 1.6548 2.1181 

FGS-
SC 

0 1.4774 1.4774 1.4774 1.4774 

0.5 2.3060 2.2035 2.1516 1.8838 

1 2.5018 2.4142 2.3537 2.0374 

2 2.6067 2.5587 2.4952 2.1638 

5 2.6317 2.6435 2.5834 2.2584 

10 2.6188 2.6624 2.6087 2.2805 

SCSC 

FGS-
HC 

0 2.7507 2.7507 2.7507 2.7507 

0.5 2.2165 2.3197 2.3655 2.5530 

1 1.9420 2.0896 2.1641 2.4509 

2 1.7015 1.8651 1.9717 2.3510 

5 1.5573 1.6737 1.8071 2.2649 

10 1.5398 1.6082 1.7447 2.2430 

FGS-
SC 

0 1.5457 1.5457 1.5457 1.5457 

0.5 2.4340 2.3225 2.2671 1.9804 

1 2.6444 2.5476 2.4825 2.1437 

2 2.7581 2.7025 2.6345 2.2782 

5 2.7871 2.7944 2.7302 2.3788 

10 2.7747 2.8154 2.7575 2.4024 

CCCC 

FGS-
HC 

0 3.3663 3.3663 3.3663 3.3663 

0.5 2.7033 2.8327 2.8898 3.1229 

1 2.3590 2.5461 2.6399 2.9967 

2 2.0540 2.2641 2.3985 2.8727 

5 1.8669 2.0222 2.1906 2.7658 

10 1.8407 1.9381 2.1113 2.7389 

FGS-
SC 

0 1.8436 1.8436 1.8436 1.8436 

0.5 2.9587 2.8163 2.7473 2.3877 

1 3.2223 3.0967 3.0158 2.5904 

2 3.3669 3.2904 3.2055 2.7581 

5 3.4070 3.4069 3.3268 2.8827 

10 3.3937 3.4346 3.3620 2.9119 

 

Tab. 5. The first four frequencies of square FGS plates (1-4-1) with  
a/h = 45, k1 = 50, k2 = 15 

BCs Plate n 
Normalized frequencies 

�̄�1 �̄�2 �̄�3 �̄�4 

SSSS 

FGS-
HC 

0 2.0351 4.8527 4.8527 7.6586 

0.5 1.8611 4.3877 4.3877 6.9055 

1 1.7707 4.1436 4.1436 6.5090 

2 1.6811 3.8982 3.8982 6.1097 

5 1.5964 3.6633 3.6633 5.7257 

10 1.5643 3.5740 3.5740 5.5797 

FGS-
SC 

0 1.3185 2.7594 2.7594 4.1886 

0.5 1.6503 3.7252 3.7252 5.7897 

1 1.7741 4.0725 4.0725 6.3581 

2 1.8764 4.3540 4.3540 6.8179 

5 1.9566 4.5755 4.5755 7.1788 

10 1.9831 4.6487 4.6487 7.2979 

SSCC 

FGS-
HC 

0 2.7052 5.9047 5.9266 8.9704 

0.5 2.4566 5.3292 5.3484 8.0838 

1 2.3269 5.0266 5.0448 7.6161 

2 2.1970 4.7216 4.7382 7.1440 

5 2.0732 4.4288 4.4437 6.6894 

10 2.0261 4.3177 4.3323 6.5166 

FGS-
SC 

0 1.6225 3.2659 3.2746 4.8327 

0.5 2.1214 4.4804 4.4956 6.7338 

1 2.3039 4.9129 4.9301 7.4055 

2 2.4527 5.2635 5.2827 7.9484 

5 2.5692 5.5387 5.5590 8.3744 

10 2.6083 5.6297 5.6504 8.5155 

SCSC 

FGS-
HC 

0 2.8756 5.3557 6.7353 9.1380 

0.5 2.6076 4.8374 6.0736 8.2344 

1 2.4671 4.5654 5.7249 7.7575 

2 2.3264 4.2913 5.3733 7.2769 

5 2.1921 4.0284 5.0346 6.8132 

10 2.1416 3.9287 4.9057 6.6368 

FGS-
SC 

0 1.6935 2.9985 3.6657 4.9129 

0.5 2.2376 4.0841 5.0755 6.8517 

1 2.4353 4.4723 5.5750 7.5362 

2 2.5967 4.7870 5.9794 8.0896 

5 2.7231 5.0344 6.2970 8.5240 

10 2.7652 5.1161 6.4020 8.6677 

CCCC 

FGS-
HC 

0 3.5315 7.1179 7.1179 10.4331 

0.5 3.1928 6.4172 6.4172 9.3997 

1 3.0152 6.0476 6.0476 8.8533 

2 2.8367 5.6747 5.6747 8.3016 

5 2.6652 5.3157 5.3157 7.7691 

10 2.6004 5.1788 5.1788 7.5661 

FGS-
SC 

0 2.0033 3.8544 3.8544 5.5549 

0.5 2.7066 5.3520 5.3520 7.7846 

1 2.9595 5.8820 5.8820 8.5694 

2 3.1644 6.3109 6.3109 9.2038 

5 3.3258 6.6474 6.6474 9.7021 

10 3.3789 6.7588 6.7588 9.8669 
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Fig. 5. The first four mode shapes of (SSSS) FGS-HC plate with a/b = 1, a/h = 20, k1 = 10, k2 = 5, n = 1, ratio of thicknesses (1-1-1) 

 

 
Fig. 6. The first four mode shapes of (CCCC) FGS-SC plate with a/b = 1, a/h = 25, k1 = 15, k2 = 10, n = 2, ratio of thicknesses (1-2-1)

Figs. 5 and 6 present the first four modeshapes of FGS plates. 
Observing that the 2nd and 3rd eigenmodes are the same as each 
other, owing to the FGS plates under the same “S” or “C” boundary 
conditions at the edges. 

4. CONCLUSIONS 

The article aims to conduct the frequency analysis of FGS 
plates resting on an elastic foundation by using a finite element 
method based on Chebyshev polynomials. The idea of this element 
is to use the high-order shape functions that satisfy the interpolation 
condition at the points based on Chebyshev polynomials as well as 
to use the full Gauss quadrature rule for the establishment of the 
stiffness matrix and mass matrix. Numerical examples and com-
ments are made to illustrate in detail the influence of geometric pa-
rameters and material properties on the free vibrations of the FGS 
plates. According to the numerical outcomes, some important ob-
servations are summarized as follows: i. The effectiveness of using 
the finite element method based on Chebyshev polynomials in the 
analysis of free vibrations of FGS plates on the elastic foundation. 
ii. Elastic foundation increases the frequency of FGS plates, as ex-
pected. More specifically, the natural frequencies are increasing 
with the existence of an elastic foundation. The natural frequencies 
are increasing with the increasing values of two parameters: spring 
stiffness and shear layer stiffness. iii. While increasing the value of 
the power-law index leads to the decreasing value of the natural 
frequency for hardcore sandwich plates, the natural frequency in-
creases with increasing value of the power-law index for softcore 
sandwich plates. In conclusion, it is evident that the elastic founda-
tion has a significant effect on the mechanical behavior of sandwich 
plates. 

The obtained results can be useful for extended calculation, de-
sign, and fabrication of FGS plates working under various condi-
tions. In the near future, the proposed method will continue to 
demonstrate the stability of the results when meshing distortion. In 
addition, although the Chebyshev interpolation polynomial is estab-
lished in the form of Lagrange interpolation, the Runge phenome-
non does not occur, so it can be used as an original finite element 

method to solve PDEs with high accuracy. Besides, the task of non-
linear analysis of plate/shell structures will be developed. Last but 
not least, the computational cost for complex structures will also be 
considered to help readers have a specific view of the advantages 
and disadvantages of this proposed method. 
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