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Abstract: The solution to the system of equations of the descriptor linear discrete-time  with different fractional orders is derived by the use 
of the Drazin inverse of matrices. This solution is applied to analysis of the pointwise completeness and the pointwise degeneracy  
of the descriptor discrete-time linear systems with different fractional orders. Necessary and sufficient conditions for the pointwise  
completeness and the pointwise degeneracy of the descriptor discrete –time linear systems with different fractional orders are established. 
The proposed methods are illustrated by numerical examples. 
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1. INTRODUCTION 

Descriptor (singular) linear systems have been considered  
in [3,5,7,15,19]. The fundamentals of fractional calculus have been 
given in [22, 23, 13]. The linear systems with fractional orders have 
been analyzed in [4, 6, 9, 10] and with different fractional orders  
in [1, 12, 15, 23, 24]. The analysis of differential algebraic equations  
and its numerical solutions have been analyzed in [20] and the nu-
merical and symbolic computations of generalized inverses in [29]. 
The T-Jordan canonical form and the T-Drazin inverse based on 
the T-product have been  addressed in [23]. In [21] The multilinear 
time-invariant descriptor systems have been analyzed in [21].  
The descriptor and standard positive linear systems by the use of 
Drazin inverse has been addressed in [2, 8, 15]. The pointwise de-
generacy of autonomous control systems have been considered in 
[20] and of linear delay-differential systems with nonnilpotent pas-
sive matrices in [16]. The pointwise completeness and degeneracy 
of fractional descriptor discrete-time linear systems by the use of 
the Drazin inverse matrices have been addressed in [9, 11, 12]  
and of fractional different orders in [14, 15, 26]. Analysis of the dif-
ferential-algebraic equations has been analyzed in [19] and the nu-
merical and symbolic computations of the generalized inverses  
in [27]. The T-Jordan canonical form and T-Drazin inverse based 
on the T-Jordan canonical form and T-Drazin inverse based on the 
T-product has been investigated in [21, 22]. The numerical  
and  symbolic computation of the generalized inverses have been 
analyzed in [27]. 

In this paper the pointwise completeness and the pointwise de-
generacy of descriptor linear discrete-time systems with different 
orders will be analyzed. 

The paper is organized as follows. In Section 2 the Drazin in-
verse of matrices is applied to find the solution to descriptor linear 
discrete-time systems with different fractional orders. Necessary 
and sufficient conditions for the pointwise completeness of the 

systems with fractional orders are established in Section 3 and  
the pointwise degeneracy of the systems in Section 4. Concluding 
remarks are given in Section 5. 

The following notation will be used: ℜ - the set of real numbers, 

ℜ𝑛×𝑚 - the set of 𝑛 × 𝑚 real matrices and ℜ𝑛 = ℜ𝑛×1,  

𝑍+- the set of nonnegative integers, 𝐼𝑛- the 𝑛 × 𝑛 identity matrix, 

𝑖𝑚𝑔𝑃 – the image of the matrix 𝑃. 

2. SOLUTION OF THE STATE EQUATIONS OF FRACTIONAL 
DESCRIPTOR DISCRETE-TIME LINEAR SYSTEMS 

Consider the descriptor fractional discrete-time linear system 
with two different fractional orders 

𝐸 [
𝛥𝛼𝑥1(𝑖 + 1)

𝛥𝛽𝑥2(𝑖 + 1)
] = 𝐴 [

𝑥1(𝑖)
𝑥2(𝑖)

] and 

𝐸 = [
𝐸1 0
0 𝐸2

] , 𝐴 = [
𝐴11 𝐴12

𝐴21 𝐴22
],                                           (1) 

where  

0 < 𝛼, 𝛽 < 2, 𝑖 ∈ 𝑍+ = {0,1,2, . . . }, 𝑥1(𝑖) ∈ ℜ𝑛1  
and  

𝑥2(𝑖) ∈ ℜ𝑛2   

are the state vectors  and  

𝐸𝑘, 𝐴𝑘𝑗 ∈ ℜ𝑛𝑘×𝑛𝑗; k, j = 1,2. 

The fractional difference of α (β) order is defined by [11, 13] 

𝛥𝛼𝑥(𝑖) = ∑ 𝑐𝛼(𝑗)𝑥(𝑖 − 𝑗)

𝑖

𝑗=0

, 

𝑐𝛼(𝑗) = (−1)𝑗 (
𝛼
𝑗 ) = (−1)𝑗 𝛼(𝛼−1)…(𝛼−𝑗+1)

𝑗!
, 𝑐𝛼(0) =

1, 𝑗 = 1,2, . ..                                                                               (2) 
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In descriptor systems it is assumed that 𝑑𝑒𝑡 𝐸 = 0 and the 
pencil is regular, i.e. 

𝑑𝑒𝑡 [[
𝐸1𝑧1 0

0 𝐸2𝑧2
] − [

𝐴11 𝐴12

𝐴21 𝐴22
]] ≠ 0 for some 𝑧1, 𝑧2 ∈ 𝐶     

                                                                                                     (3)                   

where C is the field of complex numbers. 
Premultiplying (1) by the matrix  

[𝐸 diag(𝐼𝑛1
𝑐1, 𝐼𝑛2

𝑐2) − 𝐴]−1  

we obtain 

𝐸̄ [
𝛥𝛼𝑥1(𝑖 + 1)

𝛥𝛽𝑥2(𝑖 + 1)
] = 𝐴̄ [

𝑥1(𝑖)
𝑥2(𝑖)

], 𝑖 ∈ 𝑍+                                    (4) 

where  

𝐸̄ = [𝐸 diag(𝐼𝑛1
𝑐1, 𝐼𝑛2

𝑐2) − 𝐴]−1𝐸 = [
𝐸̄11 𝐸̄12

𝐸̄21 𝐸̄22

], 

𝐴̄ = [𝐸 diag(𝐼𝑛1
𝑐1, 𝐼𝑛2

𝑐2) − 𝐴]−1𝐴 = [
𝐴̄11 𝐴̄12

𝐴̄21 𝐴̄22

].           (5) 

The equation (1) and (4) have the same solution  

𝑥(𝑖) = [
𝑥1(𝑖)
𝑥2(𝑖)

]. 

Lemma 1. If there exist 𝑐1, 𝑐2 ∈ 𝐶 such that  

𝐸̄[diag(𝐼𝑛1
𝑐1, 𝐼𝑛2

𝑐2)]𝐸̄ = 𝐸̄2[diag(𝐼𝑛1
𝑐1, 𝐼𝑛2

𝑐2)]               (6) 

then 

𝐸̄𝐴̄ = 𝐴̄𝐸̄.                                                                                   (7) 

Proof. From (5) we have 

𝐸̄diag(𝐼𝑛1
𝑐1, 𝐼𝑛2

𝑐2) − 𝐴̄ = [𝐸 diag(𝐼𝑛1
𝑐1, 𝐼𝑛2

𝑐2) −

𝐴]−1 × [𝐸 diag(𝐼𝑛1
𝑐1, 𝐼𝑛2

𝑐2) − 𝐴]−1𝐴 = 𝐼𝑛                        (8) 

and 

𝐴̄ = 𝐸̄diag(𝐼𝑛1
𝑐1, 𝐼𝑛2

𝑐2) − 𝐼𝑛.                                                (9) 

Using (9) we obtain 

𝐸̄𝐴̄ = 𝐸̄{𝐸̄diag(𝐼𝑛1
𝑐1, 𝐼𝑛2

𝑐2) − 𝐼𝑛} =

𝐸̄2diag(𝐼𝑛1
𝑐1, 𝐼𝑛2

𝑐2) − 𝐸̄                                                      (10) 

and 

𝐴̄𝐸̄ = {𝐸̄diag(𝐼𝑛1
𝑐1, 𝐼𝑛2

𝑐2) − 𝐼𝑛}𝐸̄ =

𝐸̄diag(𝐼𝑛1
𝑐1, 𝐼𝑛2

𝑐2)𝐸̄ − 𝐸̄.                                                     (11) 

Therefore, if the condition (6) is satisfied then the equation (7) 
holds.  

Remark 1. If 𝑐1 = 𝑐2 ∈ 𝐶 then the equality (6) is always satis-
fied 

𝐸̄[diag(𝐼𝑛1
𝑐1, 𝐼𝑛2

𝑐2)] = 𝐸̄𝑐 = 𝑐𝐸̄.                                       (12) 

Lemma 2. If the condition (7) is satisfied then 

𝐸̄𝐴̄𝐷 = 𝐴̄𝐷𝐸̄,                                                                            (13) 

𝐸̄𝐷𝐴̄ = 𝐴̄𝐸̄𝐷,                                                                            (14) 

𝐸̄𝐷𝐴̄𝐷 = 𝐴̄𝐷𝐸̄𝐷.                                                                       (15) 

Proof is given in [13]. 

Remark 2. If 𝑑𝑒𝑡 𝐴 ≠ 0 and we assume 𝑐1 = 𝑐2 = 0 then  

𝐸̄ = [−𝐴]−1𝐸, 𝐴̄ = −𝐼𝑛                                                         (16) 

in this case the condition (7) is satisfied. 
Substituting (2) into (4) we obtain 

𝐸̄ [
𝛥𝛼𝑥1(𝑖 + 1)

𝛥𝛽𝑥2(𝑖 + 1)
] = [

𝐴̄1𝛼 𝐴̄12

𝐴̄21 𝐴̄2𝛽
] [

𝑥1(𝑖)
𝑥2(𝑖)

] 

+ ∑ [
𝐼𝑛1

𝑐𝛼(𝑗 + 1) 0

0 𝐼𝑛2
𝑐𝛽(𝑗 + 1)

] [
𝑥1(𝑖 − 𝑗 + 1)
𝑥2(𝑖 − 𝑗 + 1)

]𝑖+1
𝑗=2 ,   (17) 

where 𝐴̄1𝛼 = 𝐴̄11 + 𝛼𝐼𝑛1
, 𝐴̄2𝛽 = 𝐴̄22 + 𝛽𝐼𝑛2

. 

In particular case when 𝐸̄ = 𝐼𝑛 we have the following theorem. 
Theorem 1. The fractional discrete-time linear system (4) with 

𝐸̄ = 𝐼𝑛 and initial conditions 

 𝑥(0) = [
𝑥1(0)
𝑥2(0)

]  

has the solution 

𝑥(𝑖) = 𝛷𝑖 [
𝑥1(0)
𝑥2(0)

],                                                                     (18) 

where 

𝛷𝑖 = {
𝐼𝑛 for 𝑖 = 0

𝐴̄𝛷𝑖−1 − 𝐷1𝛷𝑖−2−. . . −𝐷𝑖−1𝛷0 for 𝑖 = 1,2, . . .
     

                                                                                                 (19a) 

𝐴̄ = [
𝐴̄11 𝐴̄12

𝐴̄21 𝐴̄22

] , 𝐷𝑘 = [
𝐼𝑛1

𝑐𝛼(𝑘 + 1) 0

0 𝐼𝑛2
𝑐𝛽(𝑘 + 1)

],   

𝑘 = 1,2, . ..                                                                              (19b) 

Proof is given in [13]. 

If 𝐸̄ ≠ 𝐼𝑛 then the Drazin inverse of matrix 𝐸̄ will be applied  
to find the solution to the equation (4). 

Definition 1. A matrix 𝐸̄𝐷 is called the Drazin inverse  

of 𝐸̄ ∈ ℜ𝑛×𝑛 if it satisfies the conditions 

𝐸̄𝐸̄𝐷 = 𝐸̄𝐷𝐸̄,                                                                          (20a) 

𝐸̄𝐷𝐸̄𝐸̄𝐷 = 𝐸̄𝐷,                                                                       (20b) 

𝐸̄𝐷𝐸̄𝑞+1 = 𝐸̄𝑞,                                                                       (20c) 

where q is the smallest nonnegative integer (called index of 𝐸̄), 

satisfying the condition rank 𝐸̄𝑞 = rank 𝐸̄𝑞+1. 

The Drazin inverse 𝐸̄𝐷 of a square matrix 𝐸̄ always exists  

and is unique. If 𝑑𝑒𝑡 𝐸̄ ≠ 0 then 𝐸̄𝐷 = 𝐸̄−1. The Drazin inverse 

matrix 𝐸̄𝐷 can be computer by the one of known methods [2, 3, 13]. 
Theorem 2. The descriptor fractional discrete-time linear sys-

tem (4) with initial conditions 𝑥(0) = [
𝑥1(𝑖)
𝑥2(𝑖)

] ∈ 𝐼𝑚( 𝐸̄𝐷𝐸̄) =

𝐸̄𝐷𝐸̄𝑣, 𝑥 ∈ ℜ𝑛 has the solution 

𝑥(𝑖) = [
𝑥1(𝑖)
𝑥2(𝑖)

] = 𝛷̂𝑖𝐸̄
𝐷𝐸̄𝑣,                                                   (21) 

where 

𝛷̂𝑖 = {
𝐼𝑛 for 𝑖 = 0

𝐴̂𝛷̂𝑖−1 − 𝐷̂1𝛷̂𝑖−2−. . . −𝐷̂𝑖−1𝛷̂0 for 𝑖 = 1,2, . . .
    (22a)     

𝐴̂ = 𝐸̄𝐷𝐴̄ = [
𝐴̂11 𝐴̂12

𝐴̂21 𝐴̂22

],                                
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𝐷̂𝑘 = 𝐸̄𝐷 [
𝐼𝑛1

𝑐𝛼(𝑘 + 1) 0

0 𝐼𝑛2
𝑐𝛽(𝑘 + 1)

] , 𝑘 = 1,2, . ..     (22b)                                                         

Proof. Taking into account that the equations (1) and (4) have  
the same solution the proof will be accomplisched by showing that 
the solution (21) satisfies the equation (4). 

Using (21) and (22) we obtain 

𝐸̄𝛷̂𝑖+1𝐸̄𝐷𝐸̄𝑣 = 𝐸̄(𝐴̂𝛷̂𝑖 − 𝐷̂1𝛷̂𝑖−1−. . . −𝐷̂1𝛷̂0)𝐸̄𝐷𝐸̄𝑣 =

𝐸̄𝐸̄𝐷𝐴̂(𝐴̂𝛷̂𝑖−1 − 𝐷̂1𝛷̂𝑖−2−. . . −𝐷̂𝑖−1𝛷̂0)𝐸̄𝐷𝐸̄𝑣                   (23) 
= 𝐴̂(𝐴̂𝛷̂𝑖−1 − 𝐷̂1𝛷̂𝑖−2−. . . −𝐷̂𝑖−1𝛷̂0)(𝐸̄𝐷𝐸̄)2𝑣 = 𝐴̂𝛷̂𝑖𝐸̄

𝐷𝐸̄𝑣     

since (14) and (𝐸̄𝐷𝐸̄)2 = 𝐸̄𝐷𝐸̄. Therefore, the solution  
of the equation (1) has the form (21).  

3. THE POINTWISE COMPLETENESS OF DESCRIPTOR 
FRACTIONAL DISCRETE-TIME LINEAR SYSTEMS WITH 
DIFFERENT FRACTIONAL ORDERS 

In this section necessary and sufficient conditions  
for the pointwise completeness  of the descriptor discrete-time lin-
ear systems with different fractional orders will be established. 

Definition 2. The descriptor fractional discrete-time linear sys-
tem (1) is called pointwise complete at the point 𝑖 = 𝑞 if for every 
final state 𝑥𝑓 ∈ ℜ𝑛, there exists an boundary condition 𝑥(0) ∈

𝐼𝑚 𝐸̄ 𝐸̄𝐷 such that  

𝑥(𝑞) = 𝑥𝑓 ∈ 𝐼𝑚 𝐸̄ 𝐸̄𝐷.                                                             (24) 

Theorem 3. The descriptor fractional discrete-time linear 
system (1) is pointwise complete for 𝑖 = 𝑞 and every 𝑥𝑓 ∈ ℜ𝑛 ∈

𝐼𝑚 𝐸̄ 𝐸̄𝐷 if and only if  

𝑑𝑒𝑡𝛷̂𝑞 ≠ 0                                                                             (25a) 

where  

𝛷̂𝑞 = 𝐴̂𝛷̂𝑞−1 − 𝐷̂1𝛷̂𝑞−2−. . . −𝐷̂𝑞−1𝛷̂0                              (25b) 

and 𝐴̂, 𝐷̂𝑘 are defined by (22b). 
Proof. From (21) for 𝑖 = 𝑞

 
we obtain 

𝑥𝑓 = 𝑥(𝑞) = 𝛷̂𝑞𝐸̄𝐷𝐸̄𝑥(0).                                                    (26) 

For given 𝑥𝑓 ∈ ℜ𝑛 ∈ 𝐼𝑚 𝐸̄ 𝐸̄𝐷 we may find 𝑥(0) ∈

𝐼𝑚 𝐸̄ 𝐸̄𝐷 if and only if the condition (25) is satisfed. Therefore, the 
descriptor fractional system (1) is pointwise complete at the point 
𝑖 = 𝑞 if and only if the condition (25) is satisfied.  

Example 1. Consider the descriptor fractional system (1)  
for 𝛼 = 0.6, 𝛽 = 0.8 with the matrices 

𝐸 = [
𝐸1 0
0 𝐸2

] = [
1 0 0
0 0 1
0 0 0

], 𝐴 = [
𝐴11 𝐴12

𝐴21 𝐴22
] =

[
0 1 1
0 0 0
0 1 0

], 

 𝑛1 = 1, 𝑛2 = 2.                                                                     (27) 

We choose 𝑐1 = 𝑐2 = 1 and using (5), (27) we obtain 

𝐸̄ = [𝐸 diag(𝑐1, 𝑐2) − 𝐴]−1𝐸 = [
𝐸̄11 𝐸̄12

𝐸̄21 𝐸̄22

] = [
1 0 1
0 0 0
0 0 1

], 

 𝐴̄ = [𝐸 diag(𝑐1, 𝑐2) − 𝐴]−1𝐴 = [
𝐴̄11 𝐴̄12

𝐴̄21 𝐴̄22

] = 

[
0 0 1
0 −1 0
0 0 0

]                                                                           (28) 

The Drazin inverse matrix of 𝐸̄ has the form 

𝐸̄𝐷 = [
1 0 −1
0 0 0
0 0 1

] and 𝐸̄𝐸̄𝐷 = [
1 0 0
0 0 0
0 0 1

].                      (29) 

In this case  

𝛷̂1 = 𝐴̂ = 𝐸̄𝐷𝐴̄ = [
1 0 −1
0 0 0
0 0 1

] [
0 0 1
0 −1 0
0 0 0

] =

[
0 0 1
0 0 0
0 0 0

].                                                                              (30) 

And 𝑥(0) ∈ 𝐼𝑚 𝐸̄ 𝐸̄𝐷 = [
𝑥11(0)

0
𝑥21(0)

] and 𝑥11(0), 𝑥21(0)  

are arbitrary. 

Note that the matrix 𝛷̂1 is singular and by Theorem 2  
the descriptor fractional system with (27) is not pointwise complete 

for 𝑞 = 1 and every 𝑥𝑓 ∈ ℜ3 of the form 𝑥𝑓 = [

𝑥11(𝑡𝑓)

0
𝑥21(𝑡𝑓)

]  

and 𝑥11(𝑡𝑓), 𝑥21(𝑡𝑓) are arbitrary. 

Using (25b) for 𝑞 = 2
 
we obtain 

𝛷̂2 = 𝐴̂2 − 𝐷̂1 = [
0 0 1
0 −1 0
0 0 0

]

2

− [
𝐼2𝑐𝛼(2) 0

0 𝑐𝛽(2)
] =

[
0.12 0 0

0 0.88 0
0 0 0.08

]                                                              (31) 

and 

𝑑𝑒𝑡 𝛷̂2 = 8.448 ∗ 10−3 ≠ 0.                                                (32) 

Therefore, by Theorem 2 the descriptor fractional system with 
(27) is pointwise complete for 𝑞 = 2. 

4. THE POINTWISE DEGENERACY OF FRACTIONAL 
DESCRIPTOR LINEAR DISCRETE-TIME SYSTEMS 

In this section necessary and sufficient conditions  
for the pointwise degeneracy of the descriptor discrete-time linear 
systems with different fractional orders will be established. 

Definition 4.1. The descriptor fractional discrete-time linear sys-
tem (1) is called pointwise degenerated in the direction v for 𝑞 =
𝑞𝑓 if there exists a vector 𝑣 ∈ ℜ𝑛 such that for all initial conditions 

𝑥(0) ∈ 𝐼𝑚 𝐸̄ 𝐸̄𝐷 the solution of (1) for 𝑞 = 𝑞𝑓 satisfy  

the condition  

𝑣𝑇𝑥𝑓 = 0.                                                                                 (33) 

Theorem 3. The descriptor fractional continuous-time linear 
system (1) is pointwise degenerated in the direction 𝑣 ∈ ℜ𝑛 for 
𝑞 = 𝑞𝑓 if and only if  

𝑑𝑒𝑡𝛷̂𝑞 = 0,                                                                              (34) 

where 𝛷̂𝑞 is defined by (25b). 

Proof. From (4.1) and (26) for 𝑞 = 𝑞𝑓 we have 



DOI 10.2478/ama-2025-0035                                                                                                                                                          acta mechanica et automatica, vol.19 no.2 (2025)                                                                                                                                                                                                                                                                       

291 

𝑣𝑇𝛷̂𝑞𝑥(0) = 0.                                                                       (35) 

There exists a nonzero vector 𝑣 ∈ ℜ𝑛 such that (35) holds for 

all 𝑥(0) ∈ 𝐼𝑚 𝐸̄ 𝐸̄𝐷

 
if and only if the condition (34) is satisfied. 

Therefore, the descriptor fractional system (1) is pointwise 
degenerated in the direction 𝑣 ∈ ℜ𝑛 for 𝑞 = 𝑞𝑓 if the condition 

(34) is satisfied. □ 
Remark 2. The vector 𝑣 ∈ ℜ𝑛

 
in which the descriptor fractional 

discrete-time linear system (1) is pointwise degenerated can be 
computed from the equation 

𝑣𝑇𝛷̂𝑞 = 0.                                                                                (36) 

Example 2. (Continuation of Example 1) Consider the system 
(1) for 𝛼 = 0.6, 𝛽 = 0.8 with the matrices (27). In Example 1 it 

was shown that the matrix 𝛷̂𝑞 for 𝑞 = 1 is nonsingular. Therefore,  

the descriptor fractional system (1) with (27) is pointwise 
degenerated for 𝑞 = 1 and any direction v. 

From (31) and Theorem 3 it follows that the matrix 𝛷̂2 is 
nonsingular. Therefore, by Theorem 3 the system (1) with (27)  
is not pointwise degenerated for 𝑖 = 𝑞 = 2.                

5. CONCLUDING REMARKS 

The Drazin inverse of matrices has been applied to investiga-
tion of the pointwise completeness and the pointwise degeneracy 
of the descriptor linear discrete-time systems with different frac-
tional orders. Necessary and  sufficient conditions for the pointwise 
completeness (Theorem 2) and for the pointwise degeneracy (The-
orem 3) of the fractional linear discrete–time systems have been 
established. The considerations have been illustrated by numerical 
examples. The presented methods can be extended to the de-
scriptor  linear systems with many different fractional orders.  
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