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Abstract: A problem of inverse design of a composite material with prescribed (desired) interval effective elastic constants is formulated and 
solved. The identified parameters are the interval parameters of the constituent geometry and material properties on the microscale. Such 
uncertainty falls into the category of epistemic uncertainty, which is frequent in engineering practice and is caused by incomplete knowledge, 
not allowing for the stochastic description of quantities of interest. Commercial finite element code Ansys is applied to the computational 
homogenisation with representative volume element (RVE) analysis. The high-fidelity model is replaced by a finely adjusted polynomial 
response surface to minimise overall computation time. The response surface is used for the interval computations involved in the 
identification problem. Directed interval arithmetic is applied. It includes cancelation laws for addition and multiplication and is the preferred 
method in engineering problems. Objective functions also involve differences between the desired and actual effective interval properties 
and widths of the identified microstructure parameters. The single- and multi-objective evolutionary algorithms are applied to solve the 
optimisation tasks. In the identification problem, the interval variables are represented as pairs of real numbers (components of the directed 
intervals). As numerical examples, two problems concerning a unidirectional fibre-reinforced composite with linear-elastic properties are 
formulated and solved. The first one employs scalarization by combining the objectives with presumed weights. In the second, a more 
extensive Pareto-frontier approach is considered. The proposed approaches provide feasible solutions to identification problems and provide 
perspectives for their extension to efficient solutions of more complex ones with epistemic uncertainty: fuzzy representation of uncertain 
parameters, nonlinear inhomogeneous materials, and others. 
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1. INTRODUCTION 

The design of new engineering materials allows for filling holes 
in the macroscopic property-space maps. These new materials in-
clude particulate and fibrous composites, sandwich structures, 
foams, lattice structures and others [1]. The components of these 
new materials are described by their properties and shape on a 
lower (e.g. micro) scale. One can evaluate the macroscopic prop-
erties, mechanical or other, of non-homogeneous materials using 
homogenisation methods. Computational methods, mainly finite 
and boundary element methods, have gained increasing attention 
from engineers and researchers due to their versatility also in the 
problems of multiscale modelling and homogenization [2,3,4,5]. 
The homogenisation problems consist of the evaluation of effective 
properties (e.g. elastic) of non-homogeneous materials on the 
macro scale. The problem involves a solution to the boundary value 
problem (BVP) at the microscale: simulation of a representative vol-
ume element (RVE) with given microstructural topology and param-
eters. On the other hand, one can formulate and solve an inverse 
problem to identify the microstructure topology and parameters, 
based on the macroscopic properties of homogenized material 
[6,7]. Among the crucial factors related to the analysis of heteroge-
neous engineering materials, uncertainties are currently of interest 
due to their impact on the precise design and manufacturing of such 

structures. Therefore, the development of computational ap-
proaches capable of dealing with uncertainties is crucial for the suc-
cessful design and manufacturing of new materials. 

Observed uncertainty falls into one of two categories: aleatoric 
or epistemic [8,9]. Aleatoric uncertainty is natural, random, and ir-
reducible. Epistemic uncertainty is due to incomplete scientific 
knowledge and can be reduced by new insights. From the proba-
bility point of view, the uncertainty of engineering quantities can be 
grouped into stochastic uncertainty (known probability), incertitude 
(unknown probability) or ignorance (fixed values). A very common 
in engineering problems, including up-to-date experimental mate-
rial characterisation methods, e.g. [10], is the second category (in-
certitude) which includes cases of intervals and fuzzy numbers. 
From the point of view of information processing, this representa-
tion of quantities is also known as information granularity 
[11,12,13]. In engineering practice, this representation is useful in 
the situation of insufficient data availability that does not allow the 
engineer to describe the process as stochastic. In the context of 
modelling, another classification of uncertainty can be introduced: 
uncertainty induced by data, component (model uncertainty), and 
structure (structural uncertainty) [9,14].  In general, incertitude un-
certainties in geometry, material properties, loading, and boundary 
conditions significantly affect structural analysis, introducing varia-
bility in performance estimations, leading to potential inaccuracies 
[15]. By including imperfect data in the quantification of uncertainty, 
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more reliable and relevant results can be obtained that better reflect 
the complexity and uncertainty present in real-world conditions. 
Note that in the case of metamodel-based computational homoge-
nization preparation stage, the boundary conditions or loading for 
the RVE with uncertain parameters (geometry, material parameters 
and phase bonding conditions) can be precise as they are driven 
by the homogenization procedure that imposes macro strains (or 
stresses) and their increments for non-linear structures. However, 
at the possible latter stage of analysing a macro-structure, that is 
beyond the scope of the present work, the transferred macro strains 
or stresses to the RVE as boundary conditions can be uncertain 
due to all macro-structure uncertainties under consideration. 

Recently, researchers have considered the incertitude uncer-
tainty to be of practical importance in engineering problems, includ-
ing homogenisation and multi-scale modelling. One of the basic ap-
proaches applied to numerical modelling of mechanical and micro-
mechanical structures with incertitude properties is the interval and 
fuzzy finite element method. Note that its efficiency is deteriorated 
by an amount of conservatism (overestimation of the uncertainty in 
the output) due to the interval matrix assembly phase [16]. In [17], 
2D composite structures were analysed, with the application of Tay-
lor expansions of effective elasticity matrices, with sensitivity anal-
ysis. In [18], stochastic FEM was applied to the analysis of the ran-
dom RVE, to determine the respective limits and evaluate fuzzy 
Young’s modulus of a composite material. The modulus was ap-
plied to the dynamic simulation of multi-body structures to obtain 
fuzzy response curves. In [19], a fuzzy RVE was introduced that 
allows one to consider the spatial variability of the ply level of the 
ply level in laminates. Fuzzy FEM is coupled with the radial basis 
functions metamodel. Global responses in dynamics and stability 
problems were solved. In [20] fuzzy numbers were applied to the 
computational homogenisation of composite materials with fuzzy 
microstructure parameters. 

One can observe that the recent approach to the solution of the 
BVP on a micro scale in complex problems involving homogenisa-
tion and multi-scale modelling, becomes the shift of the RVE nu-
merical modelling to the offline stage, outside the main loop of the 
procedure under consideration: multiscale simulation, optimisation 
or identification. This preliminary stage prepares data and creates 
model for metamodelling or a data-driven approach. Such an ap-
proach employs metamodels (surrogates) built based on observa-
tions computed by high-fidelity numerical models, usually analysed 
by the FEM. The metamodels include polynomial response sur-
faces [20], radial-basis functions [19,21], Kriging [22,23], artificial 
neural networks [24], combined analytical-numerical metamodels 
[25], and possibly others. Such an approach leads to a substantial 
reduction in the overall computation time compared to the tradi-
tional approach based on in-loop time-consuming simulations of the 
RVE. The approach with offline metamodel-based RVE simulations 
also has potential advantages in the inverse problems involving in-
certitude uncertainties, due to the substantial number of calcula-
tions related to the interval arithmetic. 

The goal of the present work is to formulate and solve a novel 
problem of inverse design of composite materials with desired in-
certitude (interval) macroscopic properties and incertitude micro-
structure unknown data. To solve the problem efficiently, the meta-
modelling approach is applied with appropriate design of experi-
ment (DoE) for numerical calculations based on a high-fidelity finite 
element method model built in Ansys software. The DoE takes into 
account the admissible ranges of geometry and material parame-
ters of the microstructure of the composite.  The minimised objec-
tive function is dependent on the desired bounds of the 

macroscopic elastic properties of the designed material. In some 
situations, e.g. manufacturing, it may be more convenient to have 
wider ranges of input microstructure parameters. Therefore, these 
ranges are also incorporated into objectives. For interval analysis, 
directed interval arithmetic is applied, which is considered efficient 
in solving engineering problems due to its feature of including can-
celation laws for both addition and multiplication [26,27,28,29,30]. 
In identification problems, the interval parameters are represented 
as pairs of real numbers (components of the directed intervals). 
Such an approach allows for the application of regular evolutionary 
algorithms for real variables. The inverse problem is solved by both 
approaches of scalarization with presumed weights for objective 
functions, and the Pareto frontier approach as well. A problem con-
cerning unidirectional fibre-reinforced composite is solved and re-
sults are presented. While similar methodologies for computational 
homogenization are documented in the literature, we believe that 
no corresponding solutions of inverse design problems for inhomo-
geneous materials with epistemic incertitude structural parameters, 
including the multi-objective identification (optimization) approach, 
have been reported. 

The paper is organised as follows: Section 2 contains an intro-
duction to computational homogenisation and related inverse prob-
lem as well as the design of the experiment and the description of 
applied metamodels. Section 3 introduces the notation and opera-
tors of interval arithmetic and directed interval arithmetic. In Section 
4 the idea and formulation of the inverse problem involving compu-
tational homogenisation with incertitude input parameters of the mi-
crostructure and desired incertitude of the effective elastic con-
stants are presented. In Section 5, numerical examples are solved 
with the approaches of weighted objective functions and the Pareto 
frontier. Section 6 contains conclusions. 

2. COMPUTATIONAL HOMOGENISATION AND INVERSE DE-
SIGN USING METAMODELS 

Multiscale modelling allows the structure to be modelled at dif-
ferent length scales. One of the elements of multiscale modelling 
that enables the analysis of heterogeneous materials, such as com-
posites or porous materials, at the microscale is homogenisation. 
Among the different homogenisation methods, computational ho-
mogenisation is the most versatile [2].  

Computational homogenisation [31] allows equivalent macro-
scopic material properties to be calculated from microscopic data. 
The basic idea of computational homogenisation is to represent the 
microstructure of a material by a statistically representative piece 
of its geometry, called a representative volume element (RVE). 
Stress analysis for RVE provides detailed information about the 
material's macro-scale behaviour. The analysis can be carried out 
using numerical methods such as the finite element method (FEM) 
[32] or the boundary element method (BEM) [33]. 

The RVE represents the structure of the entire medium (or a 
portion of it in the case of local periodicity) and thus contains all the 
information required to fully describe both the structure and proper-
ties of that medium. The RVE must satisfy the scale separation con-
dition, the Hill Mandel condition, and the imposed boundary condi-
tions [34].  

The separation of scales condition assumes that the RVE ge-
ometry must be of an appropriate size: 

𝑙𝑚𝑖𝑐𝑟𝑜 ≪ 𝑙𝑅𝑉𝐸 ≪ 𝑙𝑚𝑎𝑐𝑟𝑜,   (1) 

where 𝑙𝑚𝑖𝑐𝑟𝑜, 𝑙𝑅𝑉𝐸 and 𝑙𝑚𝑎𝑐𝑟𝑜 are characteristic microscale, RVE 
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scale and macroscale dimensions, respectively. 
The Hill-Mandel condition describes the equality of the average 

energy density at the microscale and the macroscopic energy den-
sity at the macrostructure point corresponding to the RVE location: 

〈𝜎𝑖𝑗𝜀𝑖𝑗〉 = 〈𝜎𝑖𝑗〉〈𝜀𝑖𝑗〉,   (2) 

where: 𝜎𝑖𝑗, 𝜀𝑖𝑗 are the components of the stress and strain tensors 

respectively, 〈∙〉 is the averaged value of the considered field: 

〈∙〉 =
1

|𝑉|
∫ (∙)𝑑𝑉
 

𝑉
,   (3) 

where V is the RVE volume. 
Boundary conditions have to satisfy the Hill-Mandel condition, 

e.g. in the form of periodic, linear displacement, or uniform traction 
boundary conditions. In this paper, the periodic boundary condi-
tions are used:   

𝑢𝑖
+ − 𝑢𝑖

− = 〈𝜀𝑖𝑗〉 ∙ (𝑥𝑖
+ − 𝑥𝑖

−), ∀𝑥 ∈  𝛤: 𝑛𝑖
+ = −𝑛𝑖

−

 𝑡𝑖
+ = −𝑡𝑖

−, ∀𝑥 ∈  𝛤: 𝑛𝑖
+ = −𝑛𝑖

−  ,    (4) 

where 𝑢𝑖
+, 𝑢𝑖

− are displacements of the corresponding points at the 

opposite RVE boundaries, 𝑥𝑖
+, 𝑥𝑖

− represent locations of the corre-

sponding points at the opposite RVE boundaries, 𝑡𝑖
+, 𝑡𝑖

− are trac-

tions on the corresponding points at the opposite RVE boundaries, 
Γ is the external boundary of RVE,  𝑛𝑖

+, 𝑛𝑖
− are normal vectors at 

the opposite RVE boundaries.  
Periodic boundary conditions allow for the determination of 

equivalent material properties with greater accuracy and with fewer 
internal inclusions or voids in the RVE than displacement and trac-
tion boundary conditions [35]. 

A heterogeneous material is usually assumed to consist of two 
or more homogeneous phases that obey the laws of continuum me-
chanics. In this paper, it is assumed that there is an ideal contact 
between the phases. The behaviour of an elastic body made of a 
linear isotropic material (single phase) under external loads is de-
scribed by [36]: 

− geometrical relations: 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),   (5)  

− constitutive law (Hooke’s law): 

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝐺𝜀𝑖𝑗 ,  (6) 

− equilibrium equations:  

𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0, 𝑖, 𝑗 = 1, 2, 3,   (7) 

where 𝑢𝑖 represents the components of the displacement tensor, 𝜆 

is the Lamé’s parameter, 𝛿𝑖𝑗 is the Kronecker’s delta, 𝐺 is the 

Kirchhoff modulus and 𝑏𝑖 denotes the volume forces. 
Using Equations (5) and (6), the equilibrium equations ex-

pressed by displacements (Navier-Lamé equations) are obtained: 

𝐺𝑢𝑖,𝑗𝑗 + (𝐺 + 𝜆)𝜆𝑢𝑗,𝑗𝑖 + 𝑏𝑖 = 0.   (8) 

For linear elastic materials, there is no need to analyse the RVE 
for each point in the macrostructure, and equivalent material prop-
erties can be calculated prior to analysing the macroscopic model. 
In order to obtain equivalent properties, described by a fourth-order 
material tensor, a series of RVE analyses must be performed with 
specific boundary conditions.  

For a homogenised orthotropic material, 6 analyses allow the 
calculation of 9 stiffness coefficients 𝐶 representing stress-strain 
relationship. In this case, Eq. (6) can be written using the Voigt 

notation as [37]:  

[
 
 
 
 
 
 
〈𝜎11〉

〈𝜎22〉

〈𝜎33〉

〈𝜎23〉

〈𝜎13〉

〈𝜎12〉]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
 𝐶22 𝐶23 0 0 0
  𝐶33 0 0 0
   𝐶44 0 0
 𝑠𝑦𝑚   𝐶55 0
     𝐶66]

 
 
 
 
 

[
 
 
 
 
 
 
〈𝜀11〉

〈𝜀22〉

〈𝜀33〉

2〈𝜀23〉

2〈𝜀13〉

2〈𝜀12〉]
 
 
 
 
 
 

.  (9) 

The problem of determining the values of microscopic proper-
ties for given macroscopic data is known as the inverse design 
[6,7]. The inverse design belongs to a group of ill-posed problems 
as different sets of microscopic parameters can fulfil the assumed 
macroscopic values. One of the techniques for solving common in-
verse design problems is the use of optimisation methods. Due to 
the presence of a large number of local extremes of the objective 
functions, global optimisation methods, such as evolutionary algo-
rithms, artificial immune systems, particle swarm, and ant colony 
algorithms, are recommended [38]. In this paper, evolutionary algo-
rithms (EAs) are applied to solve the inverse design problem [39]. 

The inverse design problem can be described as a constrained 
optimisation task: 

𝑔(𝒑)  = ‖𝐶𝑖𝑗(𝐩) − 𝐶𝑖𝑗
∗ ‖ → min,   (10)  

where 𝐩 is a vector of design variables, 𝑔(𝐩) is an objective func-

tion, 𝐶𝑖𝑗(𝐩) are elastic constants dependent on the design varia-

bles, 𝐶𝑖𝑗
∗  denotes required stiffness coefficients and ‖∙‖ is a matrix 

Euclidean norm. 
Due to manufacturing and material property constraints, optimi-

sation constraints are related to design variables: 

𝑏𝑖
𝐿 ≤ 𝑝𝑖

−,+ ≤ 𝑏𝑖
𝐿, 𝑖 = 1, 2 , …  , 𝑛,  (11) 

where 𝑛 is the number of design variables, 𝐛𝐋and 𝐛𝐔 are vectors 
of lower and upper design variable constrains, respectively: 

𝐛𝐋𝐔 = [𝐛𝐋 𝐛𝐔] =

[
 
 
 
𝑏1
𝐿 𝑏1

𝑈

𝑏2
𝐿 𝑏2

𝑈

⋮ ⋮
𝑏𝑛
𝐿 𝑏𝑛

𝑈]
 
 
 
.  (12) 

Solving an inverse design problem requires multiple calcula-
tions of the objective function(s) value. This is particularly time-con-
suming when FEM is used to solve the boundary value problem. A 
way to reduce computational costs may be to use response sur-
faces (RS) as the metamodel [40].  

The use of RS allows the highly nonlinear behaviour of the 
structure to be modelled, without the need to perform complex 
mathematical operations on the system matrices. RS is generated 
from precomputed sets of output parameters. The RS constitutes 
an approximate parametric model of the original system created 
from a precomputed set of models with different input parameter 
values. The quality of RS strongly depends on the shape of the ex-
act response function being approximated, the number of data 
points, and the volume of the design space in which the model is 
built. To reduce the number of cases required for evaluation, an 
appropriate design of experiment (DoE) based on the type of ex-
pected response and the proposed RS should be used [41].  

Then, the calculated values of the output parameters are used 
to compute RS. 
 This paper adopts the 2nd order polynomial method as RS. This 
method uses an enhanced quadratic form to represent the relation-
ship between inputs and outputs and is suitable for optimisation 
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problems because of the generation of smooth functions with a sin-
gle extremum. 

The work assumes a very exact fit of the metamodel, and the 
uncertainty of its parameters is ignored. As a result, only the uncer-
tainty associated with the design variables is considered. 

Once the RS has been created, an assessment of its quality 
should be carried out to ensure that the values of the output param-
eters are correctly represented. In the paper the coefficient of de-
termination 𝑅2, the predicted residual error sum of squares 
𝑃𝑅𝐸𝑆𝑆 and the standard error of the estimate 𝜎𝑒𝑠𝑡 quality metrics 
are used to assess the quality of RS. 

3. DIRECTED INTERVALS AND DIRECTED INTERVAL 
ARITHMETIC 

If the parameters of the system are not precisely determinable, 
they may be treated as uncertain and modelled as information gran-
ules [13]. In mechanical systems, uncertainties typically arise from 
both design and manufacturing processes. The most widely used 
granularity models for such uncertainties are rough sets, interval 
numbers, fuzzy numbers, and random variables.  

GrC can be introduced into both the numerical homogenisation 
and inverse design procedures considered in the paper. Uncertain-
ties that can be used as model parameters can relate to geometry, 
material properties, loads, or boundary conditions. As a result of the 
analysis, ranges of estimated quantity values can be obtained. 
When a specific range of parameter values is known, the interval 
numbers allow the representation of uncertainty.  

Interval arithmetic is based on the interval representation of a 
single number [42]: 

𝑎̅ = [𝑎−, 𝑎+] = {𝑎 ∈ 𝑎̅:  𝑎− ≤ 𝑎 ≤ 𝑎+},   (13)  

where 𝑎− and 𝑎+ ∈ ℝ are left and right ends of the interval 𝑎̅. 
The central value of the interval is calculated as follows: 

𝑐𝑤(𝑎̅) = mean( 𝑎
−, 𝑎+) .  (14)  

In the case where 𝑎− =  𝑎+, the interval is called degenerate. 
Classical interval arithmetic is based on simple arithmetic for real 
numbers, which is extended to interval numbers. This results in the 
following operations on interval numbers: addition, subtraction, 
multiplication, division, multiplication by a scalar, and the inverse of 
an interval [43].  

 The main drawback of classical interval arithmetic is the lack 
of operations opposite to addition and inverse to multiplication [44]. 
As a result, e.g. when solving interval systems of equations, a wid-
ening of the intervals occurs. This effect can be significantly re-
duced by using directed interval numbers and directed interval 
arithmetic.  

A directed interval number is defined as an ordered pair of real 
numbers: 

𝑎̅ = [𝑎−, 𝑎+] = {𝑎 ∈ 𝔻:  𝑎−, 𝑎+ ∈ ℝ},   (15)  

where 𝔻 = ℙ ∪ 𝕀 is a set of all proper ℙ and all improper 𝕀 interval 
numbers with real ends [27].  

The directed interval numbers are proper if 𝑎− < 𝑎+ and im-
proper if 𝑎− ≥ 𝑎+. Additionally, the set ℤ = ℤℙ ∪ ℤ𝕀 contains all 
directed intervals with element 0: 

ℤℙ = {𝑎̅ ∈ ℙ:  𝑎
− ≤ 0 ≤ 𝑎+}

ℤ𝕀 = {𝑎̅ ∈ 𝕀:  𝑎
+ ≤ 0 ≤ 𝑎−}

.   (16) 

Each interval in set 𝔻 has two functionals [40]:  

− the ‘direction’ functional: 

𝜏(𝑎̅) = {
+, 𝑖𝑓 𝑎− ≤ 𝑎+

−, 𝑖𝑓 𝑎− > 𝑎+
 ,  (17)  

− the ‘sign’ functional:  

∀𝑎̅ ∈ 𝔻\ℤ       𝜎(𝑎̅) = {
+, 𝑖𝑓 𝑎−, 𝑎+ > 0

−, 𝑖𝑓 𝑎−, 𝑎+ < 0
.   (18)  

These functionals determine the result of an arithmetic opera-
tion performed on two directed intervals. Based on these, basic op-
erations in directed interval arithmetic are defined as: 

− addition: 

∀𝑎̅ ∈ 𝔻    𝑎̅ + 𝑏̅ = [𝑎− + 𝑏−, 𝑎+ + 𝑏+],   (19)  

− subtraction: 

∀𝑎̅ ∈ 𝔻     𝑎̅ − 𝑏̅ = [𝑎− − 𝑏+, 𝑎+ − 𝑏−],   (20)  

− multiplication: 

𝑎̅ ∙ 𝑏̅ =

{
 
 
 

 
 
 [𝑎

−𝜎(𝑏̅) ∙ 𝑏−𝜎(𝑎̅), 𝑎𝜎(𝑏̅) ∙ 𝑏𝜎(𝑎̅)],                               𝑎̅, 𝑏̅ ∈ 𝔻\ℤ

[𝑎𝜎(𝑎̅)𝜏(𝑏̅) ∙ 𝑏−𝜎(𝑎̅), 𝑎𝜎(𝑎̅)𝜏(𝑏) ∙ 𝑏𝜎(𝑎̅)],            𝑎̅ ∈ 𝔻\ℤ, 𝑏̅ ∈ ℤ

[𝑎−𝜎(𝑏̅) ∙ 𝑏𝜎(𝑏̅)𝜏(𝑎̅), 𝑎𝜎(𝑏̅) ∙ 𝑏𝜎(𝑏̅)𝜏(𝑎̅)],            𝑎̅ ∈ ℤ, 𝑏̅ ∈ 𝔻\ℤ

[min{𝑎− ∙ 𝑏+, 𝑎+ ∙ 𝑏−} ,max{𝑎− ∙ 𝑏−, 𝑎+ ∙ 𝑏+}],   𝑎̅, 𝑏̅ ∈ ℤℙ
[max{𝑎− ∙ 𝑏−, 𝑎+ ∙ 𝑏+} ,min{𝑎− ∙ 𝑏+, 𝑎+ ∙ 𝑏−}],   𝑎̅, 𝑏̅ ∈ ℤ𝕀 

0̅,                                 (𝑎̅ ∈ ℤℙ , 𝑏̅ ∈ ℤ𝕀) ∪ (𝑎̅ ∈ ℤ𝕀 , 𝑏̅ ∈ ℤℙ)

,  (21)  

− division (0 ∉ [𝑏−, 𝑏+]): 

𝑎̅

𝑏̅
= {

[𝑎−𝜎(𝑏̅)/𝑏𝜎(𝑎̅), 𝑎𝜎(𝑏̅)/𝑏−𝜎(𝑎̅)],                         𝑎̅, 𝑏̅ ∈ 𝔻\ℤ

[𝑎−𝜎(𝑏̅)/𝑏−𝜎(𝑏̅)𝜏(𝑎̅), 𝑎𝜎(𝑏̅)/𝑏−𝜎(𝑏)𝜏(𝑎)], 𝑎̅ ∈ ℤ, 𝑏̅ ∈ 𝔻\ℤ
 .   (22)  

The symbols 𝜎 and  −𝜎  occurring in the superscript determine 
which end of the interval appears in the formula depending on 
whether it is a proper or improper number. Specifically, −𝜎  
changes the particular end from left to right or vice versa. 

The directed interval arithmetic defines two additional opera-
tors: 

− opposite of addition: 

∀𝑎̅ ∈ 𝔻    −𝔻𝑎̅ = [−𝑎
−, −𝑎+],   (23)  

− inverse of multiplication: 

∀𝑎̅ ∈ 𝔻\ℤ    1/𝔻𝑎̅ = [1/𝑎
−, −1/𝑎+],    (24)  

which allow determining two additional directed operations: 

− directed subtraction: 

∀𝑎̅, 𝑏̅ ∈ 𝔻    𝑎̅ −𝔻 𝑏̅ = [𝑎
− − 𝑏−, 𝑎+ − 𝑏+],   (25)  

− directed division: 

𝑎̅/𝔻𝑏̅ = {
[𝑎−𝜎(𝑏̅)/𝑏−𝜎(𝑎̅), 𝑎𝜎(𝑏̅)/𝑏𝜎(𝑎̅)],      𝑎̅, 𝑏̅ ∈ 𝔻\ℤ

[𝑎−𝜎(𝑏̅)/𝑏𝜎(𝑏̅), 𝑎𝜎(𝑏̅)/𝑏𝜎(𝑏)], 𝑎̅ ∈ ℤ, 𝑏̅ ∈ 𝔻\ℤ
 .   (26)  

As a result, the 𝑎̅ −𝔻 𝑎̅ = 0̅ and 𝑎̅/𝔻𝑎̅ = 1̅ operations can 
be obtained. These operations allow the efficient application of 
arithmetic operations of subtraction and division with a significant 
decrease in unwanted interval widening [44]. Moreover, the differ-
ence of the interval numbers appearing in the objective function can 
take a value close to or equal to 0, which is advantageous in opti-
misation problems where the width of this difference can be mini-
mised. 
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4. GRANULAR COMPUTATIONAL INVERSE DESIGN 

In this paper, a granular approach is proposed to perform ho-
mogenisation and inverse design for inhomogeneous materials with 
uncertainties of their microstructure parameters. The Granular 
Computational Homogenisation (GCH) procedure is applied to per-
form the inverse design. The first step of GCH is related to the anal-
ysis of the material structure and available property data. On the 
basis of the microstructure of the material, a geometrical model of 
the structure (RVE) is prepared which is transferred to the FEM 
software. Material property data are used to create a numerical 
model of the microstructure, including the constitutive relationships. 
The decision about the geometry and the treatment of individual 
material properties as certain or uncertain results in input parame-
ters for the GCH procedure. The number of identified parameters 
affects the number of sample calculations in the DoE phase. The 
GCH procedure, together with numerical examples showing ho-
mogenisation results for granular linear and nonlinear heterogene-
ous materials, is described in detail in the previous publication [20]. 

The Granular Computational Inverse Design (GCID) problem is 
related to the search for ranges of properties of the model on the 
micro scale that result in a specific material behaviour on the macro 
scale. The problem is formulated as an optimisation task using 
granular computing and can be described as:  

{
minimise  𝑓𝑔(𝐩̅)

subject to: 𝑏𝑖
𝐿 ≤ 𝑝𝑖

−,+ ≤ 𝑏𝑖
𝑈, 𝑖 = 1, 2, … , 𝑛

    (27)  

To create the objective function for the optimisation algorithm, 
the resulting interval stiffness coefficients are used to assess the 
consistency with the assumed uncertain values of the material 
properties. The measure of mismatch (distance) between two inter-
val numbers is described by the norm: 

𝐷([𝑎−, 𝑎+], [𝑏−, 𝑏+]) = √(𝑎− − 𝑏−)2 + (𝑎+ − 𝑏+)2.   (28)  

 This representation allows for a continuous and smooth objec-
tive function. The objective function for linear-elastic material prop-
erties is described by: 

 𝑓𝑘(𝐩̅) = 𝑓[𝐷(𝐶̅𝑖𝑗 (𝐩̅) −𝔻 𝐶̅𝑖𝑗
∗ )],   (29)  

where 𝐶̅𝑖𝑗(𝐩̅) is an interval function of stiffness coefficient based 

on RS, 𝐶̅𝑖𝑗
∗  is an assumed output interval of stiffness coefficient, 

𝑓𝑘(𝐩̅) is a function describing the 𝑘-th optimisation objective in 
multi-objective problems. 

An additional objective of material optimisation is related to the 
current width of the design variables: 

𝑤(𝑝̅𝑖) = |𝑝𝑖
+ − 𝑝𝑖

−|.  (30)  

A larger uncertainty width of the optimised design variables 
makes it easier to find a material with properties that meet the spec-
ified values. For multiple design variables, the widths of the param-
eters can vary considerably. To provide an equivalent treatment of 
the parameters, width normalisation is introduced. The normalized 
width 𝑤′(𝑝̅𝑖) of interval parameter 𝑝̅𝑖 is described as: 

𝑤′(𝑝̅𝑖) =
𝑤(𝑝̅𝑖)

𝑏𝑖
𝑈−𝑏𝑖

𝐿,  (31)  

In the optimisation process, the minimum normalized width of 
all parameters is maximized: 

𝑓𝑘(𝐩̅) = min
𝑝𝑖
𝑤′(𝑝̅𝑖)  → max, 𝑖 = 1,… , 𝑛,   (32)  

where 𝑛 is a number of design variables. 
To solve optimisation tasks, global optimisation algorithms in 

the form of evolutionary algorithms are employed. For a single-ob-
jective optimisation task, the distributed evolutionary algorithm 
(DEA) is applied [45].  DEA is based on the concept of coevolution-
ary algorithms, where an entire population of individuals is divided 
into two or more subpopulations, usually with an identical number 
of individuals in each. Each subpopulation evolves almost inde-
pendently, exchanging information with other subpopulations dur-
ing the migration phase. DEA has been shown to be highly efficient 
and effective in many optimisation problems [38].  

To solve a multi-objective optimisation problem, the MOOPTIM 
(MultiObjective OPTIMization tool) algorithm [46] is used. The algo-
rithm is based on Pareto concept, and it allows one to obtain a set 
on non-dominated solutions. MOOPTIM is an improved version of 
NSGA-II [47] with different selection and new as well as modified 
mutation and crossover operators. As presented in [48], MOOPTIM 
outperforms NSGA-II in some benchmark and engineering prob-
lems, especially for functions difficult to optimise, that is, strongly 
multimodal, with a non-convex or discontinuous Pareto front. To 
assess the quality of the resulting Pareto front, a weighted hyper-
volume indicator [49] is used.  

 
Fig. 1. Granular Computational Inverse Design scheme 

The concept of GCID is illustrated in Fig. 1. In the first step, the 
optimisation problem is formulated (number of design variables, 
number of stiffness coefficients considered, constraints on the var-
iables, number of criteria). Based on this information, an optimisa-
tion approach (use of a single- or multi-objective algorithm) is se-
lected. The next step involves the Granular Computational Homog-
enisation procedure to calculate the output interval stiffness coeffi-
cients based on the interval variables. The output values are used 
to compute the values of the objective functions. These operations 
are performed until the stopping criterion of the optimisation algo-
rithm is met.  

A multi-criteria optimisation problem can be solved using multi-
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objective algorithms or single-criteria algorithms with additional as-
sumptions, such as the use of a weighting method or changing ob-
jectives into optimisation constraints. The use of a multi-objective 
algorithm may require the use of additional nonlinear constraints 
related to the values of the objective function. As the result of the 
multi-objective algorithm is a Pareto front, the search area can be 
reduced by limiting the maximum distance between the required 
values of the stiffness coefficients and the values given by the op-
timisation algorithm. As a result of the optimisation, it is possible to 
obtain maximum ranges of uncertain microscopic properties of the 
homogeneous materials of which the final material is composed. 

The GCID procedure assumes the use of regular optimisation 
algorithms (based on classic arithmetic) to solve the problem de-
scribed by granular data. An application of EA for problems with 
imprecise data is done by converting the design variables. It is per-
formed by introducing two design variables as 𝑎−and 𝑎+values of 
each proper interval input parameter. In order to ensure the proper 
intervals are maintained, the correct sequence of end values is ver-
ified and adjusted as needed.   

5. NUMERICAL RESULTS 

A fibre-reinforced composite with uniform distribution of unidi-
rectional fibres is considered. RVE contains 9 uniformly distributed 
parallel fibres. The dimensions of the RVE are assumed as 
30×30×30 μm (Fig. 2). The volume fraction of the reinforcement 𝑓 
depends on the diameter of the fibre df. The geometry is discretised 
into 29 484 high-quality hexahedral elements with quadratic shape 
functions (Hex20), resulting in 124 531 nodes and 373 593 DoFs. 

 
a)             b)    

Fig. 2.  The RVE model of the fibre-reinforced composite material: a) unit 
cell geometry, b) FEM mesh 

Since a uniform fibre distribution is assumed, the material can 
be treated as orthotropic with two equivalent perpendicular direc-
tions (𝑥2 and 𝑥3). As a result, the number of independent stiffness 
coefficients in Eq. 9 reduces to six due to the following equalities: 

 𝐶12 = 𝐶13, 𝐶22 = 𝐶33, 𝐶55 = 𝐶66.  

The aim of the inverse design is to optimise the possible ranges 
of input parameters at the microscale in order to obtain the pre-
sumed equivalent macroscopic linear material properties due to 
normal strain loading in one direction. Microscopic material models 
are assumed to be isotropic ones. 

The first objective is to obtain an uncertain value of the 𝐶22 co-

efficient of the stiffness matrix: 𝐶̅22
∗

 = [15.2, 16.8] GPa. This factor 
is related to the stress response to the load in the direction perpen-
dicular to the fibre orientation and is crucial to determining the 

mechanical properties of the laminate. The second objective is to 
obtain the width of the identified parameters’ ranges in assumed 
intervals.  

The interval values of elastic moduli, Poisson’s ratios of fibre 
and matrix materials, as well as the volume fraction of the reinforce-
ment are used as the design variables:  

𝑝̅1 = 𝐸̅𝑚 [GPa], 𝑝̅2 = 𝜈̅̅𝑚  [−], 𝑝̅3 = 𝐸̅f  [GPa], 𝑝̅4 = 𝜈̅̅f  [−], 𝑝̅5 = 𝑓̅ [−].  

It is assumed that reinforcement volume fraction range is 𝑓∈ 
[0.2, 0.4] while assumed linearly-elastic material properties’ ranges 
(variable constrains) are:  

− matrix Young’s modulus 𝐸𝑚 ∈ [2, 8] GPa,  

− matrix Poisson’s ratio 𝜈̅𝑚 ∈ [0.3, 0.4], 

− fibre Young’s modulus 𝐸𝑓 ∈ [50, 450] GPa, 

− fibre Poisson’s ratio 𝜈̅𝑓∈ [0.2, 0.35]. 
As the introduced objectives are potentially contradictory, two 

approaches to the optimisation problem are applied. The first ap-
proach involves a single-objective evolutionary algorithm using a 
weighting method to combine both optimisation goals. In the sec-
ond approach, a multi-objective evolutionary algorithm is used to 
determine the Pareto front for the two objective functions. To solve 
the inverse design problem, computational homogenisation based 
on the material microstructure representation, 2nd order polynomial 
RS for interval variables and evolutionary algorithms are used. 

To solve the optimisation problem, the RS, describing material 
behaviour for a wide range of identified parameters, is created. To 
create the RS in terms of the 2nd order polynomial, the DoE is per-
formed. The CCF variant of Central Composite Design is used, re-
sulting in 43 design points [41]. The output values are calculated 
using periodic boundary conditions. Numerical homogenisation is 
performed for each design point.  

All calculations were performed on a workstation notebook with 
an Intel Core i7-8750H 6-core 2.2GHz processor and 32GB of 
RAM. The computational time for homogenisation for  each design 
point was approximately 60 s, and the total computation time for all 
design points to obtain the response surface was approximately 45 
min. The optimisation algorithms used within the methodology 
(populational algorithms, here the Evolutionary Algorithm) require a 
very large number of calculations of the objective function. The use 
of a response surface, once construct-ed, provides almost instan-
taneous information about the value of the objective function. 

After the design points calculation, the coefficients of 2nd order 
polynomial RS are calculated utilising the least squares method for 
each output parameter. The number of variable input parameters is 
equal to 5, resulting in 21 polynomial coefficients. The RS is de-
scribed by: 

𝐶22
𝑅𝑆 = 𝛽0 + ∑ 𝛽𝑘𝑝𝑘

5
𝑘=1 + ∑ 𝛽𝑘𝑙𝑝𝑘𝑝𝑙𝑘,𝑙 ,   (33)  

where 

𝑘, 𝑙 ∈  {
(1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4),
(2,5), (3,3), (3,4), (3,5), (4,4), (4,5), (5,5)

}, 

𝑝𝜉  is the 𝜉-th design variable value (𝑝1 = 𝐸𝑚, 𝑝2 = 𝜈̅𝑚, 𝑝3 =

𝐸𝑓, 𝑝4 = 𝜈̅𝑓, 𝑝5 = 𝑓).  

The values of the polynomial coefficients 𝛽 and quality metrices 
for 𝐶22

𝑅𝑆 are collected in Tab. 1.  
Independent datasets were used to create and test the models. 

An additional 47 sets of combinations of random parameters were 
used to calculate the PRESS metric values. Quality metrics indicate 
very good match between the samples and the RS. 
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Tab. 1. Polynomial coefficients for 𝐶22
𝑅𝑆 and quality metrics 

5.1. Weighted sum approach 

To solve the optimisation problem using a single-objective al-
gorithm, a single objective function describing three optimisation 
goals was proposed: matching the obtained values of the stiffness 
coefficients with the expected ones (minimisation of 𝑔1(𝐩̅)) and 
widening the normalised widths of the design parameters (maximi-
sation of 𝑔2(𝐩̅)). The optimisation problem is formulated as fol-
lows: 

{
 
 
 
 

 
 
 
 

minimise  𝑓𝑔(𝐩) =   𝜑1𝑔1(𝐩) − 𝜑2𝑔2(𝐩)

subject to: 

{
 
 
 
 

 
 
 
 

𝑔1(𝐩) = 𝐷(𝐶̅22(𝐩) −𝔻 𝐶̅22
∗ )

𝑔2(𝐩) = min
𝑝𝑖
𝑤′(𝑝̅𝑖) , 𝑖 = 1, 2, … , 5

𝑏𝐿𝑖 ≤ 𝑝𝑖
−,+ ≤ 𝑏𝑈𝑖 , 𝑖 = 1, 2, … , 5

𝐛𝐋𝐔 =

[
 
 
 
 
2.0 8.0
0.3 0.4
50.0 450.0
0.2 0.35
0.2 0.4]

 
 
 
 

,   (34) 

where 𝑤(𝑝̅
𝑖
) is a width of design parameter 𝑝̅

𝑖
, 𝜑1 and 𝜑2 are 

weighting coefficients. Three sets of weighting coefficients are con-
sidered: A: 𝜑1 = 0.5, 𝜑2 = 0.5; B: 𝜑1 = 0.25, 𝜑2 = 0.75; 
C: 𝜑1 = 0.75, 𝜑2 = 0.25. In order to be able to apply the regular 
(non-interval) optimisation algorithm, both ends of each design pa-
rameter are treated as design variables, resulting in 10 design var-
iables.  

The optimisation is performed by the DEA algorithm. The DEA 
parameters were set on initial DEA runs and the authors' previous 
experience. The parameters of the DEA are: 

− number of subpopulations: sp_n = 2, 

− number of individuals in each subpopulation sp_size = 100, 

− simple crossover and Gaussian mutation probability psG = 1,  

− uniform mutation probability pfm = 0.1, 

− rank selection pressure: ps = 0.8, 

− number of generations (stopping criterion) gen_no = 100. 
The results in the form of the best solution for 30 independent 

runs of DPEA for each set of weighting coefficients with information 
about the average objective function value 𝑎𝑣𝑔[𝑓𝑔(𝐩)] and its 

standard deviation 𝜎[𝑓𝑔(𝐩)], the relative difference δw between 𝐶̅22
∗  

and 𝐶̅22(𝐩̅) widths: 

𝛿𝑤 =
|𝑤(𝐶2̅2(𝐩̅))−𝑤(𝐶2̅2

∗ )|

𝑤(𝐶22
∗ )

,  (35)  

and the relative difference δc between 𝐶̅22
∗  and 𝐶̅22(𝐩̅) central 

values: 

𝛿𝑐 = |
𝑐𝑤(𝐶2̅2(𝐩̅))−𝑐𝑤(𝐶2̅2

∗ ) 

𝑐𝑤(𝐶2̅2
∗ )

|,   (36)  

are collected in Tab. 2.  
The values of the relative differences between 𝐶*22  and 

𝐶̅22(𝐩̅),  summarised in Tab. 2, indicate very good agreement with 
the assumed values  of 𝐶*22.. It can be seen that the weighting co-

efficients affect the 𝑔1(𝐩̅) and 𝑔2(𝐩̅) in such a way that a higher 
𝜑1 value results in lower (better) values of 𝑔1(𝐩̅) and lower 
(worse) values of 𝑔2(𝐩̅) and vice versa. Standard deviation values 

for all combinations of 𝜑1 and 𝜑2 show the high repeatability of 
𝑓𝑔(𝐩̅) results for all 30 DPEA runs in each case. 

Tab. 2.  The best results of the single-objective optimisation for different 
weighting coefficients 

Exemplary optimisation results for the first five best results and 
the worst one for 𝜑1 = 0.75 and 𝜑2 = 0.25 are collected in Tab. 
3. The results indicate that the objective function is multimodal, as 
different sets of design variables result in similar objective function 
values. In particular, the expected proportional effect of the value 
of parameter 𝑝̅3 on 𝐶̅22(𝐩)  is compensated for by the values of the 
other interval parameters. 

The values of δw and δc indicate that there are very low discrep-
ancies between the assumed and obtained widths and central val-
ues of interval stiffness coefficients. 

 
5.2. Pareto approach 

The optimisation problem for the Pareto approach is described 
as: 

𝛽0 2.663E+01 

𝛽𝑘 
𝛽1 = -8.969E-01; 𝛽2 = -1.410E+02; 𝛽3 = -3.450E-04; 

𝛽4 =-3.622E-01; 𝛽5 = -4.214E+01 

𝛽𝑘𝑙  

𝛽11 = 6.144E+00; 𝛽12 = 5.427E-04; 𝛽13 = 1.586E-01; 
𝛽14 = 4.170E+00; 𝛽15 = 6.277E-03; 𝛽22 = 2.490E+00; 
𝛽23 = 5.768E+01; 𝛽24 = 4.311E-03; 𝛽25 = 1.405E-02; 
𝛽33 = 3.669E+00; 𝛽34 = -1.067E-02; 𝛽35 = 2.056E+02; 
𝛽44 = -1.086E-05; 𝛽45 = -8.753E-01; 𝛽55 = 3.672E+01 

𝑅2 0.99586 

PRESS 23.23325 

𝜎𝑒𝑠𝑡 0.35107 

Variant A B C 

Weighting coefficients 
𝜑1 = 0.25, 
𝜑2 = 0.75 

𝜑1 = 0.5, 
𝜑2 = 0.5 

𝜑1 = 0.75, 
𝜑2 = 0.25 

𝑝̅1 = 𝐸𝑚 [GPa] 
[6.05064, 
6.46002] 

[4.91259, 
5.15732] 

[5.29892, 

5.54251] 

𝑝̅2 = 𝑣𝑚 [-] 
[0.37837, 
0.38391] 

[0.34833, 
0.35504] 

[0.36931, 

0.37214] 

𝑝̅3 = 𝐸𝑓 [GPa] [443.933, 
354.949] 

[298.173, 
331.484] 

[303.429, 

370.799] 

𝑝̅4 = 𝑣𝑓 [-] [0.30482, 
0.31628] 

[0.24757, 
0.27883] 

[0.26779, 

0.34706] 

𝑝̅5 = 𝑓 [-] 
[0.20564, 
0.21752] 

[0.37770, 
0.38936] 

[0.29828, 

0.31968] 

𝑔1(𝐩)  [GPa] 1.0987E-02 1.6975E-03 7.7079E-04 

𝑔2(𝐩) [-] 5.5390E-02 4.0799E-02 2.8280E-02 

𝑓𝑔(𝐩) -3.8796E-02 -1.9551E-02 -6.4919E-03 

𝑎𝑣𝑔[𝑓𝑔(𝐩̅)] -1.6084E-02 -5.5497E-03 1.6779E-02 

𝜎[𝑓𝑔(𝐩)] 9.9484E-03 1.1636E-02 5.7618E-02 

𝐶2̅2(𝐩) [GPa] 
[15.210668,  
16.797376] 

[15.200626, 
16.801578] 

[15.200105, 

16.800763] 

𝛿𝑤 [%]  2.5140E-02 6.8900E-03 2.7100E-03 

𝛿𝑐 [%] 8.3075E-01 5.9500E-02 4.1120E-02 
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{
 
 
 
 
 

 
 
 
 
 

minimise 𝑓1(𝐩)

maximise 𝑓2(𝐩)

subject to: 

{
 
 
 
 

 
 
 
 

𝑓1(𝐩) = 𝐷(𝐶̅22(𝐩) −𝔻 𝐶̅22
∗ )

𝑓2(𝐩) = min
𝑝𝑖
𝑤′(𝑝̅𝑖) , 𝑖 = 1, 2, … ,5

𝑏𝐿𝑖 ≤ 𝑝𝑖
−,+ ≤ 𝑏𝑈𝑖 , 𝑖 = 1, … , 5

𝐛𝐋𝐔 =

[
 
 
 
 
2.0 8.0
0.3 0.4
50.0 450.0
0.2 0.35
0.2 0.4]

 
 
 
 

.   (37) 

Nonlinear constraints in the form of are introduced to limit the 
search area of the Pareto front:  𝑓1(𝐩̅) < 2.5 [GPa] and 𝑓2(𝐩̅) < 
0.2. This has been implemented by means of an exterior penalty 
method [50]. 

Optimisation is performed by the MOOPTIM algorithm. The 
MOOPTIM parameters were set on initial MOOPTIM runs and the 
authors' previous experience as: 

− number of individuals pop_size = 100, 

− Gaussian mutation probability pmG = 0.7,  

− Gaussian mutation range rmG = 0.2, 

− uniform mutation probability pmu = 0.1,  

− simple crossover probability psG = 0.1,  

− arithmetic crossover probability psG = 0.1, 

− number of generations (stopping criterion) gen_no = 200. 
The results of the optimisation in the form of Pareto fronts for 

10 executions of MOOPTIM are shown in Fig. 3. To compare the 
results with the weighted sum approach, DPEA results are also pre-
sented. Selected results for the Pareto approach are summarised 
in Tab. 4. 

These include the minimum values of 𝑓1(𝐩̅) the maximum val-

ues of 𝑓2(𝐩̅), the values of the resulting design variables and the 
values of the hyper-volume indicators 𝐼𝐻 for ideal point (0.0, 0.2) 
and nadir point (2.5, 0.0). As negative hypervolume values are gen-
erated by the algorithm described in [49], a lower 𝐼𝐻 value denotes 
a better approximation set. 

The results show that the objective functions are contradictory; 
hence, an increase in the uncertainty of the design variables 
causes a drift beyond the assumed value of the stiffness coefficient. 
However, the Pareto fronts show that there exists an individual with 
𝑓1(𝐩̅) value close to 0 with specific non-zero value of 𝑓2(𝐩̅). The 

best results for the first objective function (𝑓1(𝐩̅) = 6.2008E-04) has 
been obtained for the 5th run of the MOOPTIM algorithm while the 
best results for the second objective function (𝑓2(𝐩̅) =1.8884E-01) 
has been obtained for the 6th run of the algorithm.  

The average value of 𝐼𝐻 is equal to -0.288657, while its standard 
deviation is 0.01291, indicating a high similarity of hypervolume in-
dicators for the different MOOPTIM runs. The best 𝐼𝐻 value has 
been obtained for the 6th run of the algorithm – purple triangles in 
Fig. 3, while the worst 𝐼𝐻 value has been achieved for the 1st run 
(red diamonds). The values of  δw and δc for the Pareto points rep-
resenting the best results for 𝑓1(𝐩̅) show a very low difference be-
tween the assumed and obtained widths and central values of in-
terval stiffness coefficients, not exceeding 0.9% in the worst case. 

The multi-objective algorithm also explores the possible stiff-
ness coefficient matching for large uncertainties of the identified pa-
rameters. The highest values of 𝑓2(𝐩̅) (limited to 0.2 by a non-lin-
ear constraint) are from the range of 0.14-0.19.  

As in the case of the single-objective algorithm, the multi-objec-
tive algorithm calculates similar values of 𝑓1(𝐩̅) and 𝑓2(𝐩̅) for dif-
ferent sets of design parameters. The solved optimisation problem 
is multimodal, indicating that different materials can satisfy the op-
timisation objectives. This may be due to a relatively large number 
of design variables that describe the mechanical properties of the 
structure. 

 

Fig. 3. Pareto fronts and DPEA results 

The presented approach belongs to a-posteriori multi-criteria 
optimisation methods, in which a second phase is necessary to se-
lect a single solution. Since all solutions on the Pareto front are 
equivalent, additional criteria can be used, such as cost, manufac-
turability or material availability. Moreover, additional non-linear 
constraints may limit the search area and should be considered in 
the decision-making proce

 

Tab. 3.  Exemplary results of the single-objective optimisation for 𝜑1 = 0.75, 𝜑2 = 0.25 

Rank 
𝑝̅1 = 𝐸𝑚  

[GPa] 

𝑝̅2 = 𝑣𝑚  
[-] 

𝑝̅3 = 𝐸𝑓  

[GPa] 

𝑝̅4 = 𝑣𝑓  

[-] 

𝑝̅5 = 𝑓  
[-] 

𝑔1(𝐩) 
[GPa] 

𝑔2(𝐩) 
[-] 

𝑓𝑔(𝐩) 
𝐶2̅2(𝐩)  
[GPa] 

𝛿𝑤, 𝛿𝑐   
[%]  

1 
[5.29892, 

5.54251] 

[0.36931, 

0.37214] 

[303.429, 

370.799] 

[0.26779, 

0.34706] 

[0.29828, 

0.31968] 
7.7079E-04 2.8280E-02 -6.4919E-03 

[15.200105, 

16.800763] 

2.7100E-03 
4.1120E-02 

2 
[6.58579, 

6.84576] 

[0.31106, 

0.31661] 

[179.078, 

257.930] 

[0.23188, 

0.34675] 

[0.31161, 

0.32033] 
1.0045E-02 4.3329E-02 -3.2986E-03 

[15.195634, 

16.790953] 

4.1916E-02 
2.9256E-01 

3 
[6.02565, 

6.17328] 

[0.32825, 

0.33579] 

[260.926, 

321.946] 

[0.26363, 
0.25501] 

[0.33863, 

0.31755] 
4.2133E-03 2.4606E-02 -2.9916E-03 

[15.202722, 

16.803215] 

1.8553E-02 
3.0813E-02 

4 
[5.75597,  

6.09119] 

[0.37103, 
0.36848] 

[80.847, 
99.605] 

[0.22293, 

0.29563] 

[0.29018’ 

0.30173] 
4.9521E-03 2.5470E-02 -2.6534E-03 

[15.204895, 
16.800749] 

1.7638E-02 
2.5913E-01 

5 
[5.79374, 

6.38056] 

[0.37613, 

0.37806] 

[317.142,  
421.272] 

[0.33603, 
0.34437] 

[0.23377, 
0.23645] 

2.3205E-03 1.3425E-02 -1.6159E-03 
[15.199783, 
 16.802310] 

6.5406E-03 
1.5794E-01 

30 
[7.34717, 
7.41631] 

[0.34548, 
0.34419] 

[98.303, 
450,000] 

[0.28926, 
0.29484] 

[0.20000, 
0.22936] 

5.8223E-02 1.1523E-02 4.0787E-02 
[15.194355, 
16.857949] 

1.6345E-01 
3.9746E+00 
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Tab. 4. Results of the multi-objective optimisation 

Run 𝐼𝐻 Pareto  
point 

𝑝̅1 = 𝐸𝑚 

[GPa] 
𝑝̅2 = 𝑣𝑚  

[-] 

𝑝̅3 = 𝐸𝑓  

[GPa] 

𝑝̅4 = 𝑣𝑓  

[-] 

𝑝̅5 = 𝑓  

[-] 

𝑓1(𝐩) 

[GPa] 
𝑓2(𝐩) 

[-] 

𝐶2̅2(𝐩)  
[GPa] 

𝛿𝑤, 𝛿𝑐  
[%]  

1 -0.26058 

min 𝑓1(𝐩) 
[6.21597, 
6.45371] 

[0.32362, 
0.32760] 

[149.183, 
180.177] 

[0.21958, 
0.30889] 

[0.32641, 
0.34275] 

2.9865E-03 3.9623E-02 
[15.197072, 

16.799410] 

1.0994E-02 
1.4612E-01 

max 𝑓2(𝐩) 
[5.65513, 
6.52451] 

[0.30761, 
0.32362] 

[377.437, 
450.000] 

[0.31219, 
0.33490] 

[0.30399, 
0.36323] 

2.4308E+00 1.4490E-01 
[13.106417, 

18.035232] 

2.6823E+00 
2.0805E+02 

2 -0.28839 

min 𝑓1(𝐩) 
[6.64138, 
6.87106] 

[0.36113, 
0.36698] 

[71.940, 
162.432] 

[0.26203, 
0.31893] 

[0.22596, 
0.23219] 

2.9716E-03 3.1145E-02 
[15.201644, 

16.802470] 

1.2856E-02 
5.1625E-02 

max 𝑓2(𝐩) 
[5.78269, 
6.87106] 

[0.32687, 
0.34218] 

[334.408, 
450.000] 

[0.29318, 
0.35000] 

[0.25825, 
0.28928] 

2.2397E+00 1.5310E-01 
[13.032410, 

17.363930] 

5.0114E+00 
1.7072E+02 

3 -0.29693 

min 𝑓1(𝐩) 
[6.02157, 

6.24235] 

[0.30924, 
0.32460] 

[313.892, 

323.541] 

[0.20476, 
0.23224] 

[0.34545, 
0.35226] 

9.1474E-04 2.4120E-02 
[15.199641, 

16.799159] 

3.7500E-03 
3.0125E-02 

max 𝑓2(𝐩) 
[5.94323, 
6.93317] 

[0.30700, 
0.32460] 

[357.547, 
450.000] 

[0.28208, 
0.35000] 

[0.27794, 
0.32512] 

2.3664E+00 1.6499E-01 
[13.038762 

17.763848] 

3.7418E+00 
1.9532E+02 

4 -0.28615 

min 𝑓1(𝐩) 
[5.67805, 
5.81318] 

[0.30305, 
0.32223] 

[318.653, 
450.000] 

[0.21592, 
0.30478] 

[0.38134, 

0.38597] 
4.6047E-03 2.2522E-02 

[15.201917, 

16.795817] 

7.0812E-03 
3.8125E-01 

max 𝑓2(𝐩) 
[5.26435, 
6.37166] 

[0.34681, 
0.36387] 

[345.252, 
450.000] 

[0.31243, 
0.35000] 

[0.28161, 
0.31635] 

2.4268E+00 1.7065E-01 
[13.389715, 

18.416232] 

6.0642E-01 
2.1416E+02 

5 -0.27313 

min 𝑓1(𝐩) 
[5.49730, 
5.83237] 

[0.33979, 
0.34532] 

[377.152, 
450.000] 

[0.20000, 

0.24683] 

[0.33794, 
0.34838] 

6.2008E-04 5.2240E-02 
[15.200134, 

16.799395] 

1.4719E-03 
4.6188E-02 

max 𝑓2(𝐩) 
[5.20406, 
6.14267] 

[0.31508, 
0.33451] 

[359.835, 
450.000] 

[0.30955, 
0.33613] 

[0.33212, 
0.37497] 

2.4372E+00 1.5643E-01 
[13.098494, 

18.034225] 

2.7103E+00 
2.0848E+02 

6 -0.30318 
min 𝑓1(𝐩) 

[6.74116, 
7.13123] 

[0.34609, 
0.35073] 

[326.580, 
388.616] 

[0.22717, 
0.31078] 

[0.22181, 
0.23521] 

2.8838E-03 4.6350E-02 
[15.201307, 

16.802570] 

1.2116E-02 
7.8937E-02 

max 𝑓2(𝐩) 
[6.84060, 
8.00000] 

[0.31912, 
0.34471] 

[313.585, 
450.000] 

[0.28905, 
0.35000] 

[0.20547, 
0.24324] 

2.4610E+00 1.8884E-01 
[13.588805, 
18.660209] 

7.7817E-01 
2.1696E+02 

7 -0.29861 

min 𝑓1(𝐩) 
[6.07599, 
6.13976] 

[0.35545,  

0.36251] 

[66.934, 
103.602] 

[0.23487, 

0.27334] 

[0.29319, 

0.31667] 
1.0141E-02 1.0628E-02 

[15.204597, 
16.790961] 

1.3881E-02 
8.5225E-01 

max 𝑓2(𝐩) 
[6.16085, 
7.23273] 

[0.30000, 
0.31959] 

[311.748, 
381.206] 

[0.24644, 
0.27261] 

[0.28919, 
0.33169] 

2.3757E+00 1.7365E-01 
[13.514604, 

18.474349] 

3.4522E-02 
2.0998E+02 

8 -0.28615 

min 𝑓1(𝐩) 
[7.06127, 
7.38220] 

[0.30000, 
0.30279] 

[357.869, 
392.536] 

[0.28429, 
0.32087] 

[0.27701, 
0.29914] 

3.8161E-03 -2.796E-02 
[15.201885, 

16.803318] 

1.6259E-02 
8.9562E-02 

max 𝑓2(𝐩) 
[5.11271, 
6.11818] 

[0.37069, 
0.38602] 

[326.957, 
450.000] 

[0.32087, 
0.35000] 

[0.24097, 
0.27701] 

2.1827E+00 1.5331E-01 
[13.333662, 

17.931799] 

2.2954E+00 
1.8738E+02 

9 -0.29202 

min 𝑓1(𝐩) 
[6.98408, 
7.14029] 

[0.32483, 
0.33341] 

[89.1451, 
110.587] 

[0.27858, 
0.34763] 

[0.27141, 
0.28943] 

2.6195E-03 2.6035E-02 
[15.202586, 

16.799585] 

6.7844E-03 

1.8756E-01 

max 𝑓2(𝐩) 
[5.12698, 
6.16768] 

[0.36979, 
0.38819] 

[293.851 
450.000] 

[0.30270, 
0.33132] 

[0.25029, 
0.28474] 

2.3811E+00 1.7227E-01 
[13.529283, 

18.496622] 

8.0953E-02 
2.1046E+02 

10 -0.29388 

min 𝑓1(𝐩) 
[6.41585, 
6.79624] 

[0.37605, 
0.37959] 

[50.000, 
71.4883] 

[0.20603, 
0.24717] 

[0.21665, 
0.22781] 

2.9710E-03 3.5399E-02 
[15.199480, 

16.802953] 

7.6031E-03 
2.1706E-01 

max 𝑓2(𝐩) 
[6.41585, 
7.39224] 

[0.34290, 
0.36104] 

[346.451, 
450.000] 

[0.30325, 
0.34305] 

[0.22490, 
0.25735] 

2.1655E+00 1.6221E-01 
[14.412384, 

18.817226] 

3.8425E+00 
1.7530E+02 

6. CONCLUSIONS 

The paper presents the Granular Computational Inverse De-
sign procedure as a novel approach to the problems of identification 
of interval microstructure parameters of inhomogeneous materials 
for desired incertitude macroscopic properties. As a result of the 
identification, interval parameters of the constituent geometry and 
the material properties on the microscale are obtained. Directed in-
terval arithmetic is applied instead of the classical one to reduce the 
undesirable effect of interval widening as a result of arithmetical op-
erations. To speed up the calculations, response surfaces has been 
applied to build the metamodel. The Central Composite Design 
method has been used as the Design of Experiment method be-
cause of the high precision of the mesh. The quality of the RS ob-
tained has been using several quality metrics. 

The GCID procedure has been verified on a fibre-reinforced 
composite with a uniform distribution of unidirectional fibres. Two 
approaches to the multi-objective optimisation are presented. A-pri-
ori methods (here the weighted sum approach) combine objectives 
using predefined weights and transform a multi-criteria problem into 
a single-criteria problem, which is solved here using a DEA 

algorithm. This method targets a specific region of the solution 
space, generating fewer candidate solutions. The second approach 
uses the MOOPTIM algorithm to generate Pareto optimal solutions 
without taking preferences into account. The decision maker can 
analyse different post-optimisation scenarios.   

Single-criteria optimisation usually produces specific solutions 
that may not be optimal in different scenarios, whereas multi-criteria 
optimisation reveals a range of viable solutions. Multi-criteria algo-
rithms like MOOPTIM explore a wider design space, resulting in a 
multimodal optimisation problem where different sets of design var-
iables can achieve similar values of the objective function.  The 
choice of approach depends on the researcher. 

The results obtained show the high efficiency of the GCID pro-
cedure in both cases.  

The presented methodology can be applied to parameter iden-
tification problems in material design and manufacturing processes 
with epistemic uncertainties. It is planned to extend the proposed 
attitude to diverse types of information granularity (fuzzy numbers), 
novel hybrid materials including e.g. auxetics, and different material 
models (nonlinear materials), and others. The extension may re-
quire application of more sophisticated and accurate metamodels. 
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