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Abstract: This article analyzes the implementation process of a fractional-order control system using available toolboxes, software,  
and hardware. The main objective is to showcase the current state-of-the-art hardware implementation of fractional-order control, comparing 
its potential to classical counterparts, and emphasizing the benefits of its utilization in industry. The article covers theoretical aspects  
of fractionalorder calculus and provides an example implementation of a Fractional-order PID controller with a NI MyRIO-1900 measurement 
board with FPGA module, comparing it with simulations for a given control plant. 
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1. INTRODUCTION 

In recent years, fractional calculus has gained considerable at-
tention among researchers in various fields of science and technol-
ogy. This calculus deals with the general extension of the concept 
of differentiation and integration to non-integral orders, which 
makes it possible to analyze and model complex phenomena that 
are not fully described by classical equations [1, 2, 3, 4, 5]. How-
ever, the greatest potential of fractional calculus lies in its applica-
tion to systems modeling and control, where the possibility of de-
signing much more robust and accurate control systems emerges. 
Current research indicates that fractional-order controllers can 
achieve much better values of control quality indicators and are 
more resistant to changes in model parameters than the commonly 
used classical PID controller [2, 6, 7, 8, 9, 10, 11, 12, 13], but most 
industrial solutions available on the market use PI/PID-type control-
lers without achieving optimal performance. This fact is due to the 
difficulty of understanding the complexity of non-integer order con-
trollers by the personnel operating the system and the complexity 
of implementing control algorithms in classical microcontrollers or 
other commercial devices. With the coming of Industry 4.0 [14] the 
automation industry is looking for new solutions to increase overall 
efficiency; that is why this paper will present both the recent avail-
able tools and implementation options for non-integer controllers. 

The purpose of this article is to compile key theoretical founda-
tions of fractional-order calculus, provide an overview of current 
trends in its practical applications, and demonstrate an example im-
plementation of Fractional-order PID controller on myRIO-1900 
measurement board. 

In this paper, all necessary theoretical aspects related to frac-
tional-order calculus and its application in automatic control sys-
tems will be presented. The most popular types of fractional-order 
controllers, methods for approximating fractional order, and current 
tuning methods for such controllers will be discussed. This will be 
followed by an analysis of current trends in hardware implementa-
tion of fractional-order controllers, along with an indication and 

comparison of available hardware and software tools. These tools 
were used to obtain models, the responses of which were com-
pared with the response of a model of an object with fractional-or-
der dynamics, called fractance, in order to determine the best one. 
The best tool will be used to develop an automatic control system 
with both a classical PID controller and a fractional-order controller, 
both in simulation and in the laboratory, and their results will even-
tually be compared. Both types of controllers will be tuned using the 
Modified Grey Wolf optimization algorithm. 

2. FRACTIONAL CALCULUS 

The fractional calculus is a form of generalization of the opera-
tions of integration and differentiation, through a new operator 

𝐷𝑡
𝑞

𝑎
  combining the functionality of both, where q - the order of the 

operator, such that q is a real number q ∈ R and a and t are the 
limits of the operation. Depending on the sign of the order of the 
operator, it can be treated as a differentiation or integration operator 
[2] according to the following formula: 

𝐷𝑡
𝑞

𝑎
 = {

𝑑𝑞

𝑑𝑡𝑞          𝑑𝑙𝑎 𝑞 > 0,

1              𝑑𝑙𝑎 𝑞 = 0,

∫ (𝑑𝜏)𝑞𝑡

𝑎
𝑑𝑙𝑎 𝑞 < 0.

                                                 (2.1) 

There are many definitions of fractional operator, but they are 
used in different fields, making it easier to analyze the relevant func-
tions. Currently, the most popular definitions found in modern books 
describing fractional calculus are the Riemann-Liovile definition RL, 
the Grünwald-Letnikov definition GL and the Caputo definition C. 

Definition 2.1. A function given by the integral [1] 

Γ(𝑥) =  ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0
, 𝑅(𝑥) >  0                                         (2.2) 

is called the Euler gamma function and satisfies the equality 

Γ(𝑥 + 1) = 𝑥Γ(𝑥) 
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where R(x) is real part of complex number x.                              (2.3) 

Definition 2.2. Riemann-Liouville fractional-order derivative is 
defined as [1] 

𝐷𝑡
𝑞

𝑎
𝑅𝐿 𝑓(𝑡) =

1

Γ(𝑁−𝑞)

𝑑𝑁

𝑑𝑡𝑁 ∫ (𝑡 − 𝜏)𝑁−𝑞−1𝑓(𝜏
𝑡

𝑎
)𝑑𝜏.               (2.4) 

Definition 2.3. Grünwald–Letnikov fractional-order derivative is 
defined as [4] 

𝐷𝑡
𝑞

𝑎
𝐺𝐿 𝑓(𝑡) = lim

ℎ→0
ℎ−𝑞 ∑ (−1)𝑘

[
𝑡−𝑎

ℎ
]

𝑘=0 (
𝑞
𝑘

) 𝑓(𝑡 − 𝑘ℎ).              (2.5) 

Definition 2.4. Caputo fractional-order derivative is defined  
as [1] 

𝐷𝑡
𝑞

𝑎
𝐶 𝑓(𝑡) =

1

Γ(𝑁−𝑞)
∫

𝑓(𝑁)(𝜏)

(𝑡−𝜏)𝑞+1−𝑁 𝑑𝜏
𝑡

𝑎
, (𝑛 − 1 ≤ 𝑞 < 𝑛).     (2.6) 

Due to its form, the Riemann-Liouville definition is used for rel-
atively simple functions (xa, ex, sin(x), etc.), while Grünwald-Let-
nikov definition found its use in numerical evaluation. On the other 
hand, because of its ability to consider time delays, memory effects, 
and the possibility of using the same form of initial conditions as for 
the integer-order case, the Caputo definition has found wide appli-
cation in control theory and automation. In this paper, the Caputo 
definition will be used precisely because of the aforementioned 
properties. 

Definition 2.5. The formula for the Laplace transform of the q−th 
order Caputo derivative eq. (2.6), when (N − 1 ⩽ q < N) has the 
form [1]: 

ℒ[ 𝐷𝑡
𝑞

0
𝐶 𝑓(𝑡)] = 𝑠𝑞𝐹(𝑠) − ∑ 𝑠(𝑞−𝑘)𝑓(𝑘−1)(0+)𝑁

𝑘=1 .              (2.7) 

Given that the function f(t) and all its derivatives have zero initial 
conditions f(0) = 0 when t = 0, then transform of the q−th order Ca-
puto derivative can be simplified to 𝑠𝑞𝐹(𝑠). 

3. FRACTIONAL-ORDER CONTROLLERS 

Controllers are an integral part of systems that provide process 
control using feedback loops. Fractional-order controllers, which 
are a generalization of classical integer-order controllers, are be-
coming increasingly popular. The leading types of Fractional-order 
controllers [4] today are CRONE Controller developed by 
Oustaloup in 1995, Fractional-order PID controller proposed by Igor 
Podlubny, and a number of lesser used controllers; Fractional lead-
lag compensator (Raynaud and Zegaïnoh, 2000), non-integer inte-
gral (Manabe, 1961) and TID compensator (Lurie, 1994). In this pa-
per only FOPID controller will be considered due to its relative sim-
plicity. 

3.1. FOPID Controller 

Fractional-order PIλDµ controller (FOPID) [3, 4] was first intro-
duced in 1999 by Igor Podlubny as generalization of the classical 
PID controller with integrator of real order λ and differentiator of real 
order µ. 

Definition 3.1. The FOPID Controller [4, 15] transfer function 
can be defined in time domain as: 

𝐶(𝑠) = 𝑘𝑝 +
𝑘𝑖

𝑠𝜆 + 𝑘𝑑𝑠µ, (𝜆, µ ≥ 0)                                       (3.1) 

 

Fig. 3.1. General structure of FOPID Controller 

 

Fig. 3.2. The FOPID controller plane 

where, kp, ki, kd are proportional constant, integration constant and 

differentiation constant respectively. 

The general structure of FOPID Controller corresponding to eq. 

(3.1) is shown on Figure 3.1, where E(s) is control error and U(s) is 

controller output. In special circumstances PIλDµ controller can be 

equal to the classic PID Controller, for example if λ = 1 and µ = 0, 

then eq. (3.1) will describe PI controller as shown in Figure 3.2. The 

controller plane for FOPID has to be divided into two areas: A when 

0 < λ, µ ⩽ 1 and B when 1 < λ, µ⩽ 2. This is due to the stability 

conditions [16] of the system depending on the value of the control-

ler order. In Figure 3.3, where q corresponds to fractional operator 

order, stability regions are depicted for the controller order corre-

sponding to the zones separated in Figure 3.2. It is worth mention-

ing that using λ, µ > 2 will result in controllers instability. 

 

Fig. 3.3. Stability region of fractional order system 

3.2. Approximation 

For practical implementation of fractional integro-differentiator 

of order α it is necessary to use conventional transfer function ap-

proximation. One of such approximation methods is Oustaloup re-

cursive filter [2,3], which provides very good results in specified fre-

quency range (ωb; ωh) using the following equations: 
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𝑠𝛼 ≈ 𝐾 ∏
𝑠+𝜔𝑘

′

𝑠+𝜔𝑘

𝑁
𝑘=1                                                                         (3.2) 

𝜔𝑘
′ = 𝜔𝑏 ∙ 𝜔𝑢

2𝑘−1−𝛼

𝑁 ,                                                                        (3.3) 

𝜔𝑘 = 𝜔𝑏 ∙ 𝜔𝑢

2𝑘−1+𝛼

𝑁 ,                                                                    (3.4) 

𝐾 = 𝜔ℎ
𝛼, 𝜔𝑢 = √𝜔ℎ/𝜔𝑏.                                                            (3.5) 

where, N - order of approximation, ωh - higher bound of frequency 

fitness, ωb - bottom bound of frequency fitness.  

For digital implementation it is possible to use any suitable 

method for conversion to discrete-time equivalent. 

3.3. Controller tuning methods 

The most challenging part of working with FOPID controllers 

arises when tuning them with the addition of two parameters related 

to the orders of integration and differentiation. The authors of the 

book [3] state that the known principles of the Ziegler-Nichols tuning 

method for the classical PID, can be applied to FOPID controllers 

for the values of constants kp, ki, kd, while the orders of λ and µ 

must be selected experimentally. However, this creates a difficulty 

in obtaining optimal system performance, as well as requiring the 

selection of the appropriate type of controller before the tuning pro-

cess begins, as each controller (P, PIλ, PDµ, PIλD) provided signifi-

cantly different results. They also proposed an analytical tuning 

method which is as follows: 

Consider the mathematical model of a given plant 

𝐺(𝑠) =
𝐾

𝑇𝑠+1
.                                                                                     (3.6) 

Since open-loop transfer function L(s) = C(s)G(s), the controller 

transfer function C(s), that gives the Bode’s ideal loop transfer func-

tion 

𝐿(𝑠) = (
𝜔𝑐

𝑠
)

𝛼

,                                                                             (3.7) 

takes the form: 

𝐶(𝑠) = 𝐾𝑝
𝑇𝑠+1

𝑠𝛼 ,                                                                                       (3.8) 

which can be expressed as 

𝐶(𝑠) = 𝐾𝑝 (
1

𝑠𝛼 + 𝑇𝑠1−𝛼).                                                               (3.9) 

The transfer function eq. (3.9) is basically a IαDµ controller 

(where µ = 1−α). The time-domain equation of the controller C(s) 

is: 

𝑢(𝑡) = 𝐾𝑝(0𝐷𝑡
−𝛼𝑒(𝑡) + 𝑇0𝐷𝑡

1−𝛼𝑒(𝑡)).                                             (3.10) 

The open-loop transfer function L(s) = C(s)G(s) can then be de-

scribed as 

𝐿(𝑠) =
𝐾𝑝𝐾

𝑠𝛼 , 1 < 𝛼 < 2.                                                           (3.11) 

To obtain α and Kp the following procedure has to be used: 

1. Find the fractional order α by using formula: 

𝜑𝑚 = 𝜋 + 𝑎𝑟𝑔𝐿(𝑗𝜔𝑐) = 𝜋 (1 −
𝛼

2
)                                       (3.12) 

from the desired phase margin φm. 

2. Calculate the proportional gain Kp by using formula: 

|𝐿(𝑗𝜔𝑐)| = 1 →  𝐾𝑝 =
𝜔𝑐

𝛼

𝐾
,                                                              (3.13) 

from the gain-crossover frequency ωcg and nominal gain of the sys-

tem K. This method was verified by experiment conducted by the 

authors which proved that the system behaved according to de-

signed specifications. 

In [17] the extension of Z-N tuning rules was presented, in which 

the authors pointed out new more complex rules. They stated that 

by formulating five design criteria—target gain crossover frequency 

ωcg, desired phase margin φm, high-frequency noise attenuation, 

disturbance rejection, and robustness to plant gain variations—the 

parameters of a FOPID controller can be systematically computed. 

The first criterion is posed as the objective function, while the 

remaining four are treated as constraints, resulting in a constrained 

optimization problem. This solution can provide good results in most 

cases but tends to reach local minima. However those results 

strongly depend on initial estimates of parameters provided, which 

is an important drawback, because in some cases finding the solu-

tion without well-chosen initial estimates can be difficult. The Au-

thors tested those tuning rules on three different theoretical plants; 

first-order, second order and fractional-order. The experiment 

proved the usefulness of these rules and at the same time showed 

that, as in the case of the classical Z-N method, the resulting set-

tings offer inferior performance to the one sought but can be applied 

even without knowledge of the plant model. 

The last approach presented in [18] focuses on solely optimiza-

tion algorithms. The authors considered BLDC (brushless direct-

current) motor as a control plant and used PID and FOPID controller 

tuned with multiple different methods to test the performance of 

such system. They used genetic algorithm, fuzzy logic, Grey Wolf 

Algorithm, Artificial bee colony algorithm, Neural-networks and 

more, with all of them using the same conditions and cost functions. 

The most popular cost functions are defined with integral indexes, 

for example, Integral Absolute Error (IAE), Integral of Time Multi-

plied Squared Error (ITSE), Integral of Time Multiplied Absolute Er-

ror (ITAE). Each algorithm generated a certain controller set vector 

and then determined the value of the cost function, which it mini-

mized at the next iteration. The main difference between the afore-

mentioned solutions was the difference in the operation of the algo-

rithm’s core, which handled the generation and updating of new set 

vectors. According to the results obtained by the authors, all of the 

considered methods can be successfully applied to determine opti-

mal setting for controller, which proved that optimization algorithms 

are viable option as tuning method. 

4. IMPLEMENTATION FEASIBILITY STUDY 

Theoretical analyses of algorithms using non-integer-order 
controllers for process control purposes are becoming an increas-
ingly common phenomenon and indicate the superiority of such 
controllers over classical solutions [19, 20, 21, 22, 23]. However, 
the part related to hardware implementation is currently at an early 
stage, and publications related to it, as well as available tools, are 
few. Delving into the currently occurring attempts to implement the 
aforementioned algorithms, it can be seen that they are mostly fo-
cused on problems related to electric motors, in particular DC mo-
tors [10, 24], PMSM motors [25] and servo motors [11, 26]. There 
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have also been attempts to control such objects as a PEM Fuel Cell 
[6], a heater [7], an Industrial boiler burning system [8], a water tank 
[9], as well as a simulation model of plant-coupled fluid tanks tested 
using a microcontroller [27]. The main sofware used to create and 
operate the algorithms were MATLAB/Simulink and Labview. On 
the other hand, the hardware part was mainly implemented using 
DAQ boards, PCI board or PLC, with the addition of real-time con-
trol libraries. 

4.1. Available toolboxes 

Compered to Labview, MATLAB has a wider range of available 
tools. In MATLAB’s add-ons library there are some easy-to-use 
toolboxes, which provide complete structures and functions for frac-
tional calculus and control, based on different definitions or approx-
imations. Among them, the most extensive can be distinguished: 
the FOMCON toolbox [28, 29, 30, 31], FOTF toolbox [32] and Nin-
teger toolbox [33]. The FOMCON toolbox is the most complex avail-
able tools as of today, it includes many useful easy-to-use blocks 
such as complete FOPID Controller, fractional integrator/derivative, 
fractional transfer function both in continues and discrete-time do-
main and many more. FOMCON can be used for design, analysis, 
simulation and control of fractional-order systems. The fractional-
order elements are approximated using Oustaloup’s recursive fil-
ters, described in Section 3.2. It also comes with controller tuning 
under performance and robustness specifications. However, its 
most significant advantage lies in providing a comprehensive, end-
to-end framework that facilitates the seamless transition from frac-
tional-order system model to a fully implementable control solution. 
FOTF toolbox is less complex than FOMCON but still provides all 
the basic blocks; fractional operator, Caputo operator, Riemann-Li-
ouville operator, FOPID Controller and FOTF Model. 

 

Fig. 4.1. Example of universal blocks from FOMCON toolbox 

 

Fig. 4.2. Example of universal blocks from FOTF toolbox 

 

Fig. 4.3. Example of universal blocks from Ninteger toolbox 

The Ninteger toolbox has a wide range of available functions 
with focus on CRONE Controllers and approximations but comes 
with only two universal block structures: Fractional derivative and 
FOPID controller. Figures 4.1, 4.2 and 4.3 show examples of uni-
versal blocks from the mentioned toolboxes. Those toolboxes are 
also suitable for hardware implementation. 

4.2. Real-Time implementation 

For real-time implementation of fractional-order algorithms, a 
number of tools can be highlighted. There are MATLAB libraries 
such as HDL Coder for DAQ boards with FPGA modules or FPGA 
and ASIC standalone systems and PLC Coder for PLC controllers. 
Both of those libraries are toolsets to automatically generate code 
from the simulink graphical interface for a particular target, for ex-
ample, VHDL/Verilog for FPGAs and ST and Ladder Logic for 
PLCs, and allow verification of code operation, as well as providing 
support for external interfaces. However, these libraries support a 
limited number of hardware platforms, so one must verify compati-
bility with specific hardware before deciding to use them. 

There is also third-party software interfacing with MATLAB 
available commercially, such as QUARC and dSPACE real-time 
software. These software solve the problem of handling embedded 
systems as a target and support the design and implementation of 
complex algorithms. Together with the software, it is possible to use 
dedicated measurement boards so that all control and measure-
ments can be performed by a single unit fully compatible with Sim-
ulink. Within the scope of this work, the QUARC software kit was 
used together with a measurement board with an FPGA module, 
acting as an external target in the form of NI-myRIO-1900. Most of 
the measurement boards from National Instruments are compatible 
with the QUARC software; hence, the NI-PCI-6221 card could also 
be used. It is worth mentioning that the previously presented equa-
tion describing the FOPID controller (eq. (3.1)) in the case of prac-
tical implementation often requires consideration of saturation and 
anti-windup algorithms. 

5. FRACTANCE DEVICES 

A device demonstrating behavior governed by fractional-order 
dynamics is termed a fractance [34, 35]. The fractance devices can 
be classified by three basic types: domino ladder circuit network, a 
tree structure of electrical elements and net-grid network. Each is 
built with infinitely many resistors R and capacitors C connected in 
series or parallel. As part of the study, it was decided to consider 
the case of a domino ladder system described as a Cauer type I 
structure, shown in Figure 5.1. Since there is no phenomenon of 
infinity in reality, a fractance with dynamics corresponding to a non-
integer order α system, can be approximated by finite number of 
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elements using truncated continued fraction expansion (CFE). Us-
ing the aforementioned CFE method, the impedance of domino lad-
der system can be described as: [34] 

𝑍𝐷𝐿(𝑠) = 𝑅0 +
1

𝐶1𝑠+
1

𝑅1+
1

𝐶2𝑠+⋯
1

𝑅𝑛−1+
1

𝐶𝑛𝑠+
1

𝑅𝑛

≈
1

𝐶𝛼𝑠𝛼                   (5.1) 

where, Cα - is pseudo-capacity of the system, Rn is resistance value 

and Cn is capacitance value. The circuit RCα in Figure 5.1, can be 

described using Kirchhoff’s second law as: 

𝑢𝑖𝑛(𝑡) = 𝑢𝑟(𝑡) + 𝑢𝑜𝑢𝑡(𝑡), 𝑡 ≥ 0,                                             (5.2) 

where uR(t) is voltage of resistor R, uin(t) is source voltage e and 

uout(t) = V0 −V− is voltage on the fractional-order element.  

 

Fig. 5.1. Distribution of potentials and currents in the ladder system [34] 

Considering that 

𝑖0(𝑡) = 𝐶𝛼 𝐷𝑎
𝐶

𝑡
𝛼𝑢(𝑡),                                                              (5.3) 

equation eq. (5.2) can be expressed as 

𝑢𝑖𝑛(𝑡) = 𝑅𝐶𝛼 𝐷𝑎
𝐶

𝑡
𝛼𝑢𝑜𝑢𝑡(𝑡) + 𝑢𝑜𝑢𝑡(𝑡), 𝑡 ≥ 0,                      (5.4) 

which can then be converted to 

𝐷𝑎
𝐶

𝑡
𝛼𝑢𝑜𝑢𝑡(𝑡) = −

𝑢𝑜𝑢𝑡(𝑡)

𝑅𝐶𝛼
+

𝑢𝑖𝑛(𝑡)

𝑅𝐶𝛼
, 𝑡 ≥ 0,                                         (5.5) 

after applying the Laplace transform, the following was obtained 

𝑍(𝑠) =
𝑈𝑜𝑢𝑡(𝑠)

𝑈𝑖𝑛(𝑠)
=

1

𝑅𝐶𝛼𝑠𝛼+1
                                                        (5.6) 

6. SIMULATION ANALYSIS 

6.1. Toolbox comparison 

 

The domino ladder system from Figure 5.1 was recreated in 
Simulink using values specified in [34] for α = 0.60 with Simscape 
electrical library as shown in Figure 6.1. That is because such sys-
tem can effectively be used as a base sample for comparison with 
models created with considered toolboxes. 

Using eq. (5.6) and FOMCON, FOTF and NINTEGER 
Toolboxes several models were created with approximation order 
of 5 and frequency range [0.001;1000]. All of the considered mod-
els were then supplied with a voltage step signal of 10 V and their 
response was compared with domino ladder system response. This 
step is essential to verify that all fractional integrators provided by 
the toolboxes perform as expected and to identify the most suitable 
implementation before applying them in control scenarios. The re-
sponses of those models are shown in Figure 6.2, where the differ-
ence between them is apparent, but appears to be insignificant.  

Hence, in addition, a correlation showing the relative error be-
tween the responses of the models and the domino ladder system 
over time was determined, which can be seen in Figure 6.3. 

Analyzing the results shown in Figure 6.3, it turns out that the 
best approximation of the non-integer-order element was obtained 
for the FOMCON toolbox. Therefore, FOMCON Toolbox will be 
used for simulation and practical implementation. 

 

Fig. 6.1. Domino ladder system created in Simulink for α= 0.60 

 

Fig. 6.2. Comparison of the responses of the considered fractional-order 

models 

 

Fig. 6.3. Relative error of the considered fractional-order models 

6.2. Second order system 

Now an example implementation of a fractional-order algorithm 
using the aforementioned tools will be presented, where a very sim-
ple system without delays will be taken as the control plant in order 
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to show the required operations. Note, however, that in reality many 
systems have delays, but the approach will remain the same. Now 
let’s consider second-order control plant which can be described as 

𝐺(𝑠) =
𝑈𝑜𝑢𝑡(𝑠)

𝑈𝑖𝑛(𝑠)
=

𝐾

(𝑠𝑇1+1)(𝑠𝑇2+1)
.                                                     (6.1) 

When K = 1, T1 = 1.5 and T2 = 2.5 the transfer function eq. 
(6.1) of plant takes form 

𝐺(𝑠) =
1

3.75𝑠2+4𝑠+1
.                                                                    (6.2) 

Based on equation (6.2), a simulation was carried out using both 

PID and FOPID controllers, where each controller was implemented 

according to equation (3.1). For the PID controller, the parameters 

were set to λ = 1 and µ = 1, while for the FOPID controller, the 

values were selected within the fractional ranges 𝜆 ∈ (0,1)  and 

µ ∈ (0,1). 

 

Fig. 6.4. Comparison of the response of the system with a FOPID  

controller tuned by considering different integral indices 

As for the tuning method, Modified Grey Wolf Optimization al-
gorithm [18, 36] was implemented and both controllers were tuned 
with the same conditions and constraints. The key distinction lies in 
the number of optimized parameters: the PID controller required 
tuning of three parameters (kp, ki, kd), whereas the FOPID control-
ler involved five parameters (kp, ki, kd, λ, μ).The cost function eq. 
(6.3) consisted of the cost of deviation (CF_E) and the cost of con-
trol (CF_U) with weights of 400:20. Considering the control effort in 
the optimization process helps to obtain controller settings that can 
be realistically implemented in hardware, as the resulting control 
signal stays within the limits supported by the measurement card, 
e.g. ±10V. The cost of deviation can be determined using different 
integral indices: ISE, IAE, ITSE or ITAE, while the cost of control 
was determined as the square of the error. Depending on the se-
lected performance index, the optimization algorithm emphasizes 
different characteristics of the system response. Therefore, a sep-
arate controller tuning procedure was performed for each of the 
specified indices to examine how the choice of a particular criterion 
influences the final outcome of the algorithm. The algorithm yielded 
four sets of settings for the PID and FOPID controller, using the 
aforementioned indices, 40 iterations and 20 searching agents. It is 
important that the optimization process is carried out for a higher 
setpoint than the one envisaged in the target implementation. The 
closed-loop response of the system (6.2) with FOPID control is 
shown in Figure 6.4. The ITSE criterion provided the best perfor-
mance, and thus its associated controller settings were adopted for 

implementation. The cycle execution time was 0.002 s for both con-
trollers. 

Cost function = 400·CF_E +20·CF_U                                           (6.3) 

7. HARDWARE IMPLEMENTATION 

7.1. Implementation procedure  

The hardware unit supporting the control algorithm is a meas-
urement board NI-myRIO-1900. Its operation and control have 
been implemented using QUARC software, which provides the 
blocks shown in Figure 7.1. The first of these (HIL Initialize) is the 
hardware configuration block, where all the parameters of the sys-
tem are specified, including the number of inputs/outputs and their 
channel numbers, measurement ranges, encoder inputs, etc. Fur-
ther on, you can see the analog input and output blocks of the card, 
as well as the block that allows you to save data to a file (To Host 
File). Analog laboratory model was used to simulate the operation 
of the system eq. (6.2).  

 

Fig. 7.1. Example of QUARC blocks for real-time implementation 

 

Fig. 7.2. A flow chart of the procedure for implementing the control  

algorithm 

The process of implementing the algorithm from Section 6.2. 
into a real system is shown in Figure 7.2. The first three steps are 
associated with Matlab Simulink software, while the next four are 
implemented by the QUARC add-on. 
1. Modeling in Simulink – design the chosen control algorithm, in 

this case a PID/FOPID controller in Simulink. It is important to 
use blocks from the QUARC library, from Figure 4.1 and Figure 
7.1. Remember to define the I/O along with the board configu-
ration via the HIL Initialize block. 

2. FOPID Tuning – input the designated controller settings – kp, 
ki, kd, λ, µ. 

3. Discretization – as the algorithm is ultimately intended for a real 
system, it should be discretized with sample time Ts. In this 
case, Ts was taken as 0.002s. 

4. C/C++ Code Generation – compile the discretized model to 
C/C++ using QUARC’s auto-code tools. 

5. ARM Target Adaptation – modify generated code for ARM  
architecture compatibility (e.g., myRIO-1900). 
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6. Deployment to Real-Time System – upload the executable to 
the myRIO-1900 real-time target. 

7. Performance Verification – validate real-time operation against 
design requirements (e.g., step response, stability). 
 It is critical to select the correct target type in the QUARC com-

piler options during the initial model preparation stage (Step 1), as 

Steps 4–6 are automatically executed by QUARC during compila-

tion based on the specified target. For this implementation, the 

quarc_linux_rt_armv7 target was chosen, as it provides a generic 

real-time framework for ARM-based systems, including the myRIO-

1900 board. 

Due to the interferences introduced by the control plant, a low-
pass filter described as eq. (7.1), was applied to its output to negate 
its effect on system operation. 

𝐺(𝑠) =
75

𝑠+75
                                                                                 (7.1) 

7.2. Experimental Results  

The system from section 6.2 has been implemented with a pro-
cedure from Figure 7.2. into myRIO-1900 using the PID and FOPID 
controller parameters optimized for the ITSE criterion. Figure 7.3 
presents the closed-loop responses of both the physical plant and 
simulated system, while Figure 7.4 displays their corresponding 
control signals. 

 

Fig. 7.3. Comparison of the simulation and real control plant responses 

for PID and FOPID controller 

Analyzing the results shown in Figures 7.3 and 7.4, it is evident 
that the experimental results coincided with the simulation results. 
The values of the cost function obtained in both the simulation and 
the experiment, along with the selected values of the controller set-
tings, are summarized in Table 1. Clearly the FOPID controller 
scored about 30% better in terms of control deviation and about 6% 
better in terms of control cost than the PID controller in both the 
simulations and the experiment. The FOPID controller demon-
strated superior performance with a 16% lower RMSE (Root Mean 
Square Error) value compared to the conventional PID controller, 
further validating its effectiveness for the given control application. 
The experimental results also yielded better results in terms of con-
trol deviation than the simulation with comparable value of control 

signal. In addition, in the waveform of the control signal in Figure 
7.4, it can be seen that the FOPID Controller handled the control 
signal better. It is also worth mentioning that control signal from 
FOPID controller was more resistant to interference than PID con-
troller, which is visible in Figure 7.4. 

 

Fig. 7.4. Comparison of control signals from PID and FOPID controller 

from the experiment 

Tab. 1. Controller parameters and cost function for the system 

 PID Controller FOPID Controller 

Kp 1,8902 2,5043 

Ki 0,4785 0,6644 

λ 1,0000 1,0060 

Kd 0,4370 0,7156 

µ 1,0000 0,5027 

CF_ESIM 12,4389 8,0557 

CF_EREAL 11,0435 7,5231 

CF_USIM 318,4723 300,3850 

CF_UREAL 328,7697 306,1467 

RMSE 0,7948 0,6858 

8. CONCLUDING REMARKS 

In this paper, a method for design and implementation of frac-
tional-order controller for both simulation and experiment were pre-
sented. The analysis of currently existing solutions made it possible 
to identify current trends in the tuning of FO controllers and showed 
the superiority and potential of FOPID controllers over their classi-
cal counterparts. The available tools for working with fractional-or-
der calculus were presented, and the FOMCON Toolbox was 
clearly identified as the current best solution. Then the physical im-
plementation of the fractional-order element is shown, along with 
an example implementation procedure for a given model of a con-
trol object. It turns out that the process of tuning FOPID controllers 
is relatively lengthy and requires appropriate definition of search 
ranges and cost functions to enable a smooth transition from the 
simulation environment to the real one. The solution shown can 
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also be easily applied to other control objects and hardware plat-
forms. Further research will focus on switched systems, which will 
eventually be enriched with fractional-order controllers. 
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