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Abstract: In this work, the new integral transform called the Elzaki transform (ET) is used to investigate and solve nonlinear higher-order 
partial differential equations (NHOPDEs), which serve as mathematical models in a range of practically significant disciplines of applied 
research. The NHOPDE solutions converge to exact solutions rather easily, were derived in a simple and easy-to-understand manner using 
ET. In addition, examples are given to illustrate how this method can be applied and how valid it is for the problem-solving form.  
There is a strong correlation between the analytical and exact solutions for the tested problems. This paper also covers the convergence  
of the ET technique to the exact solution of NHOPDEs. Numerical problems involving fourth and sixth order nonlinear hyperbolic equations 
and nonlinear wave-like equations with variable coefficients are solved to illustrate how the ET technique may efficiently yield accurate 
solutions for nonlinear PDEs of higher order with initial conditions. The results demonstrate the remarkable accuracy, efficiency,  
and dependability of the ET technique, which can be applied to a broad variety of nonlinear higher-order PDEs. This method greatly simplifies 
numerical calculations. The two primary goals of using this approach are to establish a fair frequency relationship and select an appropriate 
starting estimate. The precise, analytical, and numerical solutions to the examined problems show a high association with one another, 
further validating the robustness of this approach. Its unique properties, including its ability to simplify convolution operations and its close 
connection to the Laplace transform, also contribute to its effectiveness.  

Key words: cauchy problem, nonlinear higher order partial differential equations, Elzaki transform, hyperbolic equation, wave-like equation, 
convergence analysis

1. INTRODUCTION 

    Numerous application disciplines, such as information theory, 
research, and engineering, depend heavily on NHOPDEs. This is 
especially important for applied sciences and entropy. Moreover, 
they have been used for a long time to explain a variety of natural 
phenomena, such as temperature fluctuations, growth of popula-
tions, earthquakes, and atomic structure. In literatures, there are 
numerous applications of the integral transform in mathematics. In-
tegro-differential equations, integral equations, and linear DEs can 
all be solved with ET. This method is not appropriate for solving 
nonlinear DEs due to the nonlinear variables. Nonlinear DEs can 
be solved using ET support for the homotopy perturbation ap-
proach, differential transform method, and any other methods. 

These days, nonlinear equations are very important. Applica-
tions of nonlinear phenomena are significant in engineering, phys-
ics, and applied math. Finding new exact or approximate solutions 
to nonlinear PDEs requires creative thinking, which is challenging 
even in fields like applied math and physics, where precise solu-
tions are crucial. Many writers have focused on applying various 
methods to the investigation of solutions to nonlinear PDEs in the 
last few years. Numerous methods have been proposed, such as 
the homotopy perturbation, differential transform, Elzaki transform, 
Laplace, and double Laplace transforms, variational iteration, 
Adomian decomposition method and Laplace variational iteration 
[1–17].  

 

    Over the past few years, numerous researchers have devoted 
considerable effort to exploring various methods for solving nonlin-
ear PDEs. Techniques such as the homotopy perturbation method 
(HPM), differential transform method (DTM), Elzaki transform, La-
place and double Laplace transforms, and the variational iteration 
method (VIM) have been widely employed to address these chal-
lenges. For instance, Abdulazeez et al. in [18] utilized the homotopy 
analysis method (HAM) and VIM to solve nonlinear pseudo-hyper-
bolic equations, demonstrating that HAM provides results that are 
more accurate and closely aligned with exact solutions compared 
to VIM. Similarly, the residual power series method (RPSM), as pro-
posed by Abdulazeez et al. [19], has shown the ability to solve non-
linear pseudo-hyperbolic PDEs with non-local conditions, while 
providing fast convergence and accurate results. The explicit finite 
difference method (EFDM) was applied by Abdulazeez et al. [20] to 
solve fractional-order pseudo-hyperbolic telegraph PDEs using Ca-
puto derivatives, while the Crank–Nicholson difference scheme has 
been successfully utilized for mobile–immobile advection–disper-
sion models [21]. Furthermore, Abdulla et al. [22] extended this ap-
proach by comparing the solutions of third-order fractional PDEs 
using Caputo and Atangana-Baleanu Caputo (ABC) fractional de-
rivatives. 

To overcome and relax the inherent difficulties of nonlinear 
problems, hybrid methods that combine two or more techniques 
have been increasingly explored. For example, Ahsan et al. in [23] 
present a hybrid scheme of finite-difference and Haar wavelet dis-
tribution for the ill-posed nonlinear inverse Cauchy problem. 
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Advanced computational techniques have also found applica-
tions in specialized areas such as signal processing and electro-
magnetic wave modeling. For instance, Prewitt operators combined 
with fractional-order telegraph PDEs have been proposed by Ten-
ekeci et al. [24] for edge detection, demonstrating the potential of 
fractional operators in enhancing image processing techniques. 
Similarly, Modanli et al. [25] introduced a computational method 
based on integral transforms for solving time-fractional equations 
arising in electromagnetic waves, highlighting the importance of 
fractional calculus in addressing wave propagation problems. 

 The new technique, which is based on a novel integral trans-
form (ET), will be introduced and used in an accessible manner in 
this study [6]. We also explore the potential applications of this new 
transform side by side with the recently developed approach to 
solving NHOPDEs in this work. This method works well with stand-
ard impulse functions and functions along with discontinuities. 

  This document is organized as follows: Section 2 presents a 
new integral transform called the Elzaki transform (ET). Section 3 
presents a convergence study and analytical methodology for solv-
ing NHOPDEs. Section 4 presents a several numerical example. 
Discussion and conclusion brought under Section 5 to a close 

2. ELZAKI TRANSFORM 

Integral equations, systems of PDEs, ODEs, and PDEs may all 
be solved with the ET, as demonstrated by Tarig M. Elzaki in [2–5, 
29 - 33]. Effective application of ET is possible when Sumudu and 
Laplace transforms are unable to solve DEs with variable coeffi-
cients [11]. In engineering and applied mathematics, ET is a potent 
instrument.  

The primary ideas behind this modification in presentation are 
as follows, ET of 𝐵(𝜀) is :  

𝐸[𝐵(𝜀) ] = 𝜉 ∫ 𝐵(𝜀)𝑒
−

𝜀

𝜉𝑑𝜀
+∞

0
,        𝜀 > 0.                            (1) 

Definition 1  Let 𝑇′(𝜉)  be the ET of the derivative of 𝐵(𝜀), 
then: 

(a)  𝑇′(𝜉) =  
𝑇(𝜉)

𝜉
− 𝜉𝐵(0), 

(b)  𝑇(𝑛)(𝜉) =  
𝑇(𝜉)

𝜉𝑛 − ∑ 𝜉2−𝑛+𝑘𝑛−1
𝑘=0 𝐵(𝑘)(0),          𝑛 ≥ 1,  

where 𝑇(𝑛)(𝜉) is ET of the 𝑛𝑡ℎ derivative of 𝐵(𝜀).  
The following helpful ETs have been established in this study: 

Let  𝐸[ 𝐵(𝜀)] = 𝑇(𝜉) and 𝐸[ 𝑎(𝜀)] = 𝐴(𝜉), then: 

1. 𝐸[𝐵(𝜀) ± a(𝜀)] = 𝐸[𝐵(𝜀)] ± 𝐸[a(𝜀)] = 𝑇(𝜉) ± 𝐴(𝜉), 

2. 𝐸[𝜀𝑛] = 𝜉𝛼+2Γ(𝛼 + 1),                𝛼 > −1, 

3. 𝐸[𝐵(𝑛)(𝜀)] =
𝑇(𝜉)

𝜉𝑛 −
𝐵(0)

𝜉𝑛−2 −
𝐵′(0)

𝜉𝑛−3 − ⋯ − 𝜉𝐵𝑛−1(0). 

Let 𝐸[𝐵(𝜀, 𝜁)] = 𝑇(𝜀, 𝜉) then the ET of partial derivatives of 

𝐵(𝜀, 𝜁) are, 

𝐸 [
𝜕𝐵(𝜀, 𝜁)

𝜕𝜁
] =

1

𝜉
𝑇(𝜀, 𝜉) − 𝜉𝐵(𝜀, 0),                                           

𝐸 [
𝜕2𝐵(𝜀, 𝜁)

𝜕𝜁2
] =

1

𝜉2
𝑇(𝜀, 𝜉) − 𝐵(𝜀, 0) − 𝜉

𝜕𝐵(𝜀, 0)

𝜕𝜁
,                 

𝐸 [
𝜕𝐵(𝜀, 𝜁)

𝜕𝜀
] =

𝑑

𝑑𝜀
[𝑇(𝜀, 𝜉)] ,   𝐸 [

𝜕2𝐵(𝜀, 𝜁)

𝜕𝜀2
] =

𝑑2

𝑑𝜀2
[𝑇(𝜀, 𝜉)],  

𝐸 [
𝜕𝑛𝐵(𝜀, 𝜁)

𝜕𝜁𝑛
] =

1

𝜉𝑛
𝑇(𝜀, 𝜉) − ∑ 𝜉2−𝑛+𝑘

𝑛−1

𝑘=0

𝐵(𝑘)(𝜀, 0), 𝑛 ≥ 1. 

3. ANALYSIS OF PROPOSED SCHEME 

     We use the following initial conditions and NHOPDEs Cauchy 
problem to demonstrate the basic idea in this method:  

(
𝜕2

𝜕𝜁2 − 𝑎
𝜕2

𝜕𝜀2)
𝑘

𝐵(𝜀, 𝜁) = 𝑁𝐵(𝜀, 𝜁) + 𝑔(𝜀, 𝜁),    𝑘 ≥ 1,        (2) 

𝜕𝑖

𝜕𝜀𝑖
𝐵(𝜀, 0) = 𝑔(𝜀),      𝑖 = 1, 2, ⋯ ,2𝑘 − 1.                        

Where, 𝐵(𝜀, 𝜁) is the unknown function, 𝑁𝐵(𝜀, 𝜁)  nonlinear 
operator, 𝑔(𝜀, 𝜁)is the in-homogeneous or source term and 𝑎 =
𝑎(𝜀, 𝜁) may be a constant or function of 𝜀 or / and 𝜁.  

When 𝑘 > 1, Eq. (2) turns into a nonlinear hyperbolic equation 

of greater order [26],  while for 𝑘 = 1, an equation (2) was reduced 
to a wave shape [27, 28].  

Equation (2) can be written as follows: 

𝜕2𝑘𝐵

𝜕𝜁2𝑘
+ ∑(−𝑎)𝑘−𝑟 (

𝑘

𝑟
)

𝑘−1

𝑟=0

𝜕2𝑘𝐵

𝜕𝜁2𝑟𝜕𝜀2𝑘−2𝑟
= 𝑁𝐵(𝜀, 𝜁) + 𝑔(𝜀, 𝜁),     

0 ≤ 𝑟 ≤ 𝑘, and  (
𝑘

𝑟
) =

𝑘!

𝑟! (𝑟 − 𝑘)!
. 

   or 

𝜕2𝑘𝐵

𝜕𝜁2𝑘
= 𝑁𝐵(𝜀, 𝜁) + 𝑔(𝜀, 𝜁) − ∑ (−𝑎)𝑘−𝑟(𝑘

𝑟
)𝑘−1

𝑟=0
𝜕2𝑘𝐵

𝜕𝜁2𝑟𝜕𝜀2𝑘−2𝑟
.          (3) 

Using ET to obtain: 

𝐸 [
𝜕2𝑘𝐵

𝜕𝜁2𝑘
] = 𝐸 [𝑁𝐵(𝜀, 𝜁) + 𝑔(𝜀, 𝜁) − ∑(−𝑎)𝑘−𝑟 (

𝑘

𝑟
)

𝜕2𝑘𝐵

𝜕𝜁2𝑟𝜕𝜀2𝑘−2𝑟

𝑘−1

𝑟=0

], 

1

𝜉2𝑘 𝐸[𝐵] − ∑
𝜕𝑟𝐵(𝜀,0)

𝜕𝜁𝑟
2𝑘−1
𝑟=0 𝜉2−2𝑘+𝑟    

= 𝐸 [𝑁𝐵(𝜀, 𝜁) + 𝑔(𝜀, 𝜁) − ∑ (−𝑎)𝑘−𝑟(𝑘
𝑟
)

𝜕2𝑘𝐵

𝜕𝜁2𝑟𝜕𝜀2𝑘−2𝑟
𝑘−1
𝑟=0 ],  

 ⇒ 𝐸[𝐵] = ∑
𝜕𝑟𝐵(𝜀,0)

𝜕𝜁𝑟
2𝑘−1
𝑟=0 𝜉2+𝑟   

+𝜉2𝑘𝐸 [𝑁𝐵(𝜀, 𝜁) + 𝑔(𝜀, 𝜁) − ∑ (−𝑎)𝑘−𝑟(𝑘
𝑟
)

𝜕2𝑘𝐵

𝜕𝜁2𝑟𝜕𝜀2𝑘−2𝑟
𝑘−1
𝑟=0 ].  

Applying Elzaki inverse to get:  

𝐵(𝜀, 𝜁) = 𝐺(𝜀, 𝜁) + 𝐸−1 { 𝜉2𝑘𝐸 [𝑁𝐵(𝜀, 𝜁) −

∑ (−𝑎)𝑘−𝑟(𝑘
𝑟
)

𝜕2𝑘𝐵

𝜕𝜁2𝑟𝜕𝜀2𝑘−2𝑟
𝑘−1
𝑟=0 ]}.   

Where 𝐺(𝜀, 𝜁) denotes the term that arises from all or some of 
the function 𝑔(𝜀, 𝜁) and the stipulated initial conditions.  

This method's efficacy hinges on how we choose the initial iter-
ation 𝐵0(𝜀, 𝜁)  that yields the most precise result in the fewest 
stages. To get a solution iteratively, we use the following relations: 

𝐵𝑛+1(𝜀, 𝜁) = 𝐸−1 { 𝜉2𝑘𝐸 [𝑁𝐵𝑛 − ∑(−𝑎)𝑘−𝑟 (
𝑘

𝑟
)

𝜕2𝑘𝐵𝑛

𝜕𝜁2𝑟𝜕𝜀2𝑘−2𝑟

𝑘−1

𝑟=0

]}, 

𝐵0(𝜀, 𝜁) =  𝐺(𝜀, 𝜁).                                                                  (4) 
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It looks that the following is the series form for the solution to 
Eq. (2): 

𝐵(𝜀, 𝜁) = ∑ 𝐵𝑛(𝜀, 𝜁)∞
𝑛=0 .                                                            (5) 

According to System. (4), we are able to determine the follow-
ing 𝐵0(𝜀, 𝜁), 𝐵1(𝜀, 𝜁), 𝐵2(𝜀, 𝜁), ⋯,  Eq. (5) can then be used to 
find the solution. 

3.1. Convergence analysis  

 The convergence of the ET approach to the exact solution for 
NHOPDEs is covered in this section. 

Theorem 1.  If 𝐵 is a Banach space, ∑ 𝐵𝑛(𝜀, 𝜁)∞
𝑛=0  in Eq. (5) 

is convergence, if  ∃ (0 ≤ 𝛽 < 1), s.t. ∀ 𝜏 ∈ ℕ ⇒ ‖𝐵𝜏‖ ≤
𝛽‖𝐵𝜏−1‖, to 𝜂 ∈ 𝐵. 

Proof. Partially sum sequence is described as follows: {𝜂𝜏}𝜏=0
∞ , 

𝜂0 = 𝐵0 

𝜂1 = 𝐵0 + 𝐵1 

𝜂2 = 𝐵0 + 𝐵1 + 𝐵2 

⋮ 

𝜂𝜏 = 𝐵0 + 𝐵1 + ⋯ + 𝐵𝜏 

It is now necessary to demonstrate that: {𝜂𝜏}𝜏=0
∞  is a Cauchy 

series in Banach space, 

‖𝜂𝜏+1 − 𝜂𝜏‖ = ‖∑ 𝐵𝑛
𝜏+1
𝑛=0 − ∑ 𝐵𝑛

𝜏
𝑛=0 ‖ = ‖𝐵𝜏+1‖ ≤ 𝛽‖𝐵𝜏‖ ≤

⋯ ≤ 𝛽𝜏+1‖𝐵0‖.  

For all (𝜏, 𝜆) ∈ ℕ2  as 𝜏 ≥  𝜆 

‖𝜂𝜏 − 𝜂𝜆‖ = ‖(𝜂𝜏 − 𝜂𝜏−1) + (𝜂𝜏−1 − 𝜂𝜏−2) + ⋯ + (𝜂𝜆+1 − 𝜂𝜆)‖ 

 ≤ ‖𝜂𝜏 − 𝜂𝜏−1‖ + ‖𝜂𝜏−1 − 𝜂𝜏−2‖ + ⋯ + ‖𝜂𝜆+1 − 𝜂𝜆‖  

≤ 𝛽𝜏‖𝐵0‖ + 𝛽𝜏−1‖𝐵0‖ + ⋯ + 𝛽𝜆+1‖𝐵0‖       

≤ 𝛽𝜆+1‖𝐵0‖(𝛽𝜏−𝜆−1 + 𝛽𝜏−𝜆−2 + ⋯ + 𝛽)     

=
1−𝛽𝜏−𝜆

1−𝛽
𝛽𝜆+1‖𝐵0‖.                                        

Since (𝛽𝜏−𝜆−1 + 𝛽𝜏−𝜆−2 + ⋯ + 𝛽) is a geometric series 

and 0 ≤ 𝛽 < 1 then,  lim
𝜏,𝜆→+∞

(𝜂𝜏 − 𝜂𝜆) = 0 then {𝜂𝜏}𝜏=0
∞  is the 

Cauchy sequence in Banach space 𝐵 then 𝐵 = ∑ 𝐵𝑛(𝜀, 𝜁)∞
𝑛=0  

defined in Eq. (5) converges.   

4. NUMERICAL APPLICATIONS 

    This section applies the suggested method to the solution of 
three numerical examples of nonlinear higher-order hyperbolic 
equations and two nonlinear wave-like equations with variable co-
efficients. 

4.1. Nonlinear Higher Order Hyperbolic Equations  

Numerous physical phenomena, such as vibrating strings and 
membranes, the motion of an inviscid compressible flow, and the 
motion of a compressible fluid like air, are all explained by nonlinear 
hyperbolic PDEs. Numerous disciplines have utilized these formu-
las, such as electromagnetic theory, astrophysics, hypoelastic sol-
ids, and heat wave propagation. 

Example 1.  

Let, 𝑘 = 2, 𝑎 = 1, 𝑁𝐵 = 𝐵 −
𝜕𝐵

𝜕𝜁
   𝑎𝑛𝑑  𝑔(𝜀, 𝜁) = 0,  

then Eq. (2) becomes, 

𝜕4𝐵

𝜕𝜁4 − 2
𝜕4𝐵

𝜕𝜁2𝜕𝜀2 +
𝜕4𝐵

𝜕𝜀4 = 𝐵 −
𝜕𝐵

𝜕𝜁
 ,                                              (6) 

𝐵(𝜀, 0) =
𝜕𝐵(𝜀, 0)

𝜕𝜁
=

𝜕2𝐵(𝜀, 0)

𝜕𝜁2
=

𝜕3𝐵(𝜀, 0)

𝜕𝜁3
= 𝑒𝜀 .            

This is a Cauchy problem with a fourth-order hyperbolic equa-
tion [13]. Using ET in Eq. (6) to obtain, 

1

𝜉4
𝐸[𝐵(𝜀, 𝜁)] − ∑

𝜕𝑘𝐵(𝜀, 0)

𝜕𝜁𝑘

3

𝑘=0

𝜉−2+𝑘 − 𝐸[𝐵(𝜀, 𝜁)]                

                                                       = 𝐸 [2
𝜕4𝐵

𝜕𝜁2𝜕𝜀2 −
𝜕4𝐵

𝜕𝜀4 −
𝜕𝐵

𝜕𝜁
], 

(1 − 𝜉4)𝐸[𝐵(𝜀, 𝜁)] = (𝜉5 + 𝜉4 + 𝜉3 + 𝜉2)𝑒𝜀                         

                                                   +𝜉4𝐸 [2
𝜕4𝐵

𝜕𝜁2𝜕𝜀2 −
𝜕4𝐵

𝜕𝜀4 −
𝜕𝐵

𝜕𝜁
],  

  𝐸[𝐵(𝜀, 𝜁)] =
𝜉2

1−𝜉
𝑒𝜀 +

𝜉2

1−𝜉4 𝐸 [2
𝜕4𝐵

𝜕𝜁2𝜕𝜀2 −
𝜕4𝐵

𝜕𝜀4 −
𝜕𝐵

𝜕𝜁
].   

Inverse ET states that:  

𝐸−1[𝐸[𝐵(𝜀, 𝜁)]] = 𝐸−1 [
𝜉2

1 − 𝜉
𝑒𝜀]

+ 𝐸−1 [
𝜉4

1 − 𝜉4
𝐸 [2

𝜕4𝐵

𝜕𝜁2𝜕𝜀2
−

𝜕4𝐵

𝜕𝜀4
−

𝜕𝐵

𝜕𝜁
]]. 

The following diagram illustrates the iteration formula using a 
first approximation. 

𝐵𝑛+1(𝜀, 𝜁) = 𝐸−1 [
𝜉4

1 − 𝜉4
𝐸 [2

𝜕4𝐵𝑛

𝜕𝜁2𝜕𝜀2
−

𝜕4𝐵𝑛

𝜕𝜀4
−

𝜕𝐵𝑛

𝜕𝜁
]], 

𝐵0(𝜀, 𝜁) = 𝑒𝜀+𝜁 .                                                                         (7) 

Eq. (7), gives: 

𝐵1(𝜀, 𝜁) = 𝐸−1 [
𝜉4

1−𝜉4 𝐸 [2
𝜕4𝐵0

𝜕𝜁2𝜕𝜀2 −
𝜕4𝐵0

𝜕𝜀4 −
𝜕𝐵0

𝜕𝜁
]] =

𝐸−1 [
𝜉4

1−𝜉4 𝐸[2𝑒𝜀+𝜁 − 𝑒𝜀+𝜁 − 𝑒𝜀+𝜁]] = 0,  

and  𝐵2(𝜀, 𝜁) = 0,     𝐵3(𝜀, 𝜁) = 0, ⋯.  

Hence, the solution is  𝐵(𝜀, 𝜁) = 𝑒𝜀+𝜁 . The ETM gives this 
exact solution after only one iteration. Fig. 1 illustrates the graphical 
representation of the numerical solution via ETM, which is identical 
to the exact solution and therefore confirms higher the effective-
ness and the accuracy of this method. In this example, the relative 
error is zero because we found the exact solution using only one 
step. 

Let, 𝑘 = 2, 𝑎 = 1, 𝑁𝐵 = (
𝜕2𝐵

𝜕𝜁2)
2

− (
𝜕2𝐵

𝜕𝜀2)
2

− 144𝐵  and 

𝑔(𝜀, 𝜁) = 0, then Eq. (2) becomes, 

𝜕4𝐵

𝜕𝜁4 − 2
𝜕4𝐵

𝜕𝜁2𝜕𝜀2 +
𝜕4𝐵

𝜕𝜀4 = (
𝜕2𝐵

𝜕𝜁2)
2

− (
𝜕2𝐵

𝜕𝜀2)
2

− 144𝐵              (8) 

𝐵(𝜀, 0) = −𝜀4 ,       
𝜕𝑖𝐵(𝜀,0)

𝜕𝜁𝑖 = 0, 𝑖 = 1, 2, 3.                 
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Fig. 1.  Graphical representation of the ETM solution to example 1 after 
only one iteration 

 

Example 2. 
It is the Cauchy problem of the fourth order hyperbolic equation 

[13].  Using ET from Eq. (8) the following results are obtained:  

1

𝜉4
𝐸[𝐵(𝜀, 𝜁)] − ∑

𝜕𝑘𝐵(𝜀, 0)

𝜕𝜁𝑘

3

𝑘=0

𝜉−2+𝑘                                                    

                = 𝐸 [2
𝜕4𝐵

𝜕𝜁2𝜕𝜀2
−

𝜕4𝐵

𝜕𝜀4
+ (

𝜕2𝐵

𝜕𝜁2)
2

− (
𝜕2𝐵

𝜕𝜀2 )
2

− 144𝐵],  

𝐸[𝐵(𝜀, 𝜁)] = −𝜀4𝜉2                                                                      

             +𝜉4𝐸 [2
𝜕4𝐵

𝜕𝜁2𝜕𝜀2
−

𝜕4𝐵

𝜕𝜀4
+ (

𝜕2𝐵

𝜕𝜁2)
2

− (
𝜕2𝐵

𝜕𝜀2 )
2

− 144𝐵].  

Following Example 1, the following recurring connection can be 
obtained by following the same procedure: 

𝐵𝑛+1(𝜀, 𝜁) = 𝐸−1 [𝜉4𝐸 [2
𝜕4𝐵𝑛

𝜕𝜁2𝜕𝜀2 −
𝜕4𝐵𝑛

𝜕𝜀4 + (
𝜕2𝐵𝑛

𝜕𝜁2 )
2

−

(
𝜕2𝐵𝑛

𝜕𝜀2 )
2

− 144𝐵𝑛]],                                                                  (9) 

𝐵0(𝜀, 𝜁) = −𝜀4.                                                                               

Later on, we are able to discover: 

𝐵1(𝜀, 𝜁) = 𝐸−1[𝜉4𝐸[24]] = 𝐸−1[24𝜉6] = 𝜁4,   𝐵2(𝜀, 𝜁) =

𝐸−1[𝜉4𝐸[144𝜁4 − 144𝜁4]] = 0, 𝐵3(𝜀, 𝜁) = 0, and, 

𝐵4(𝜀, 𝜁) = 0 , ⋯. 

Thus: 𝐵(𝜀, 𝜁) = 𝜁4 − 𝜀4. As the example 1, Fig. 2 shows the 
graphical representation of the exact solution obtained by ETM to 
this example, where the relative error is zero because we found the 
exact solution using only one step. 
 
 
 
 
 
 

 
Fig. 2.  Graphical representation of the exact solution to example 2 via 

ETM    after only one step 
 

Example 3. 

Let, 𝑘 = 3, 𝑎 = 1, 𝑁𝐵 = 𝐵
𝜕2𝐵

𝜕𝜁2 − 𝐵
𝜕2𝐵

𝜕𝜀2  𝑎𝑛𝑑  𝑔(𝜀, 𝜁) =

0, then Eq. (2) becomes, 

𝜕6𝐵

𝜕𝜁6 − 3
𝜕6𝐵

𝜕𝜁4𝜕𝜀2 + 3
𝜕6𝐵

𝜕𝜁2𝜕𝜀4 −
𝜕6𝐵

𝜕𝜀6 = 𝐵
𝜕2𝐵

𝜕𝜁2 − 𝐵
𝜕2𝐵

𝜕𝜀2  ,             (10) 

𝐵(𝜀, 0) =  
𝜕2𝐵(𝜀, 0)

𝜕𝜁2
=  

𝜕4𝐵(𝜀, 0)

𝜕𝜁4

= 0,                                                

𝜕𝐵(𝜀, 0)

𝜕𝜁
= cos 𝜀 ,

𝜕3𝐵(𝜀, 0)

𝜕𝜁3
= − cos 𝜀 ,

𝜕5𝐵(𝜀, 0)

𝜕𝜁5
= cos 𝜀, 

This is the Cauchy problem for the hyperbolic equation of sixth 
order [13].  The expression for Eq. (10) is as follows:  

𝜕6𝐵

𝜕𝜁6 + 𝐵 = 3
𝜕6𝐵

𝜕𝜁4𝜕𝜀2 − 3
𝜕6𝐵

𝜕𝜁2𝜕𝜀4 +
𝜕6𝐵

𝜕𝜀6 + 𝐵
𝜕2𝐵

𝜕𝜁2 − 𝐵
𝜕2𝐵

𝜕𝜀2  + 𝐵 ,  

𝐵(𝜀, 0) =
𝜕2𝐵(𝜀, 0)

𝜕𝜁2
=

𝜕4𝐵(𝜀, 0)

𝜕𝜁4
= 0  , 

𝜕𝐵(𝜀, 0)

𝜕𝜁
=  cos 𝜀 ,     

𝜕3𝐵(𝜀, 0)

𝜕𝜁3
= −  cos 𝜀 ,   

𝜕5𝐵(𝜀, 0)

𝜕𝜁5
=  cos 𝜀 , 

 Using ET to get: 

1

𝜉6
𝐸[𝐵(𝜀, 𝜁)] − ∑

𝜕𝑘

𝜕𝜁𝑘

5

𝑘=0

𝐵(𝜀, 0)𝜉−4+𝑘 + 𝐸[𝐵(𝜀, 𝜁)] 

 = 𝐸 [3 (
𝜕6𝐵

𝜕𝜁4𝜕𝜀2
−

𝜕6𝐵

𝜕𝜁2𝜕𝜀4) +
𝜕6𝐵

𝜕𝜀6
+ 𝐵 (

𝜕2𝐵

𝜕𝜁2
−

𝜕2𝐵

𝜕𝜀2 ) + 𝐵],  

1 + 𝜉6

𝜉6
𝐸[𝐵(𝜀, 𝜁)] = (𝜉7 − 𝜉5 + 𝜉3) cos 𝜀 

                +𝐸 [3 (
𝜕6𝐵

𝜕𝜁4𝜕𝜀2
−

𝜕6𝐵

𝜕𝜁2𝜕𝜀4) +
𝜕6𝐵

𝜕𝜀6
+ 𝐵 (

𝜕2𝐵

𝜕𝜁2
−

𝜕2𝐵

𝜕𝜀2 ) + 𝐵],    

 

𝐸[𝐵(𝜀, 𝜁)] =
𝜉3

1 + 𝜉2
cos 𝜀  

+
𝜉6

1+𝜉6 𝐸 [3 (
𝜕6𝐵

𝜕𝜁4𝜕𝜀2 −
𝜕6𝐵

𝜕𝜁2𝜕𝜀4) +
𝜕6𝐵

𝜕𝜀6 + 𝐵 (
𝜕2𝐵

𝜕𝜁2 −
𝜕2𝐵

𝜕𝜀2 ) + 𝐵],  
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𝐵(𝜀, 𝜁) =  cos 𝜀  𝐸−1 [
𝜉3

1+𝜉2] + 𝐸−1 [
𝜉6

1+𝜉6 𝐸 [3 (
𝜕6𝐵

𝜕𝜁4𝜕𝜀2 −

𝜕6𝐵

𝜕𝜁2𝜕𝜀4) +
𝜕6𝐵

𝜕𝜀6 + 𝐵 (
𝜕2𝐵

𝜕𝜁2 −
𝜕2𝐵

𝜕𝜀2) + 𝐵] ].  

Using the same method as in Example 1, one may find the re-
currence relation in the following. 

𝐵𝑛+1(𝜀, 𝜁) = 𝐸−1 [
𝜉6

1+𝜉6 𝐸 [3 (
𝜕6𝐵

𝜕𝜁4𝜕𝜀2 −
𝜕6𝐵

𝜕𝜁2𝜕𝜀4) +
𝜕6𝐵

𝜕𝜀6 +

𝐵 (
𝜕2𝐵

𝜕𝜁2 −
𝜕2𝐵

𝜕𝜀2) + 𝐵] ],  

𝐵0(𝜀, 𝜁) =  cos 𝜀  𝐸−1 [
𝜉3

1+𝜉2] = cos 𝜀 sin 𝜁.  

Next, we have 𝐵1(𝜀, 𝜁) = 0 ,   𝐵2(𝜀, 𝜁) = 0 , 𝐵3(𝜀, 𝜁) = 0 , ⋯. 
Then 𝐵(𝜀, 𝜁) =  cos 𝜀 sin 𝜁, this is the exact solution of this ex-
ample and, is also obtained using ETM depicted graphically in  
Fig. 3. In this example, the relative error is zero because we found 
the exact solution using only one step. 

 
Fig. 3. Graphical representation of the exact solution to example 3 via ETM 

after only one iteration 

4.2. Nonlinear Wave-Like Equations with Variable Coefficients 

   For explaining the growth of stochastic systems, one of the 
most widely used wave models is the wave-like equation. The sto-
chastic behavior of exchange rates, fluctuations in laser light inten-
sity, and the random movements of microscopic particles immersed 
in fluids are a few examples of such systems. 

    The situation in which 𝑎 = 𝑎(𝜀, 𝜁) may be a constant or func-

tion of 𝜀or / and 𝜁, will now be examined. 
Example 4 

Let, 𝑘 = 1, 𝑎 = 𝜀2, 𝑁𝐵 = 𝐵 − (
𝜕𝐵

𝜕𝜀
)

2

 and 𝑔(𝜀, 𝜁) =

𝑒2𝜁then Eq. (2) becomes, 

𝜕2𝐵

𝜕𝜁2 − 𝜀2 𝜕2𝐵

𝜕𝜀2 = 𝐵 − (
𝜕𝐵

𝜕𝜀
)

2

+ 𝑒2𝜁 ,                                         (11) 

𝐵(𝜀, 0) =  
𝜕𝐵(𝜀, 0)

𝜕𝜁
= 𝜀.                                                             

It is the Cauchy problem related to nonlinear wave-like equation 

with variable coefficients [14, 26]. Using ET to get: 

1

𝜉2
𝐸[𝐵(𝜀, 𝜁)] − ∑

𝜕𝑘𝐵(𝜀, 0)

𝜕𝜁𝑘

1

𝑘=0

𝜉𝑘   

             = 𝐸 [𝜀2 𝜕2𝐵(𝜀,𝜁)

𝜕𝜀2 − (
𝜕𝐵(𝜀,𝜁)

𝜕𝜀
)

2

+ 𝐵(𝜀, 𝜁) + 𝑒2𝜁  ],  

1−𝜉2

𝜉2 𝐸[𝐵(𝜀, 𝜁)] = 𝜀 + 𝜀𝜉 + 𝐸[𝑒2𝜁] + 𝐸 [𝜀2 𝜕2𝐵(𝜀,𝜁)

𝜕𝜀2 −

(
𝜕𝐵(𝜀,𝜁)

𝜕𝜀
)

2

],  

𝐵(𝜀, 𝜁) = 𝐸−1 [
𝜀(𝜉2+𝜉3)

1−𝜉2 +
𝜉4

(1−𝜉2)(1−2𝜉)
]  

                     +𝐸−1 [
𝜉2

1−𝜉2 𝐸 [𝜀2 𝜕2𝐵(𝜀,𝜁)

𝜕𝜀2 − (
𝜕𝐵(𝜀,𝜁)

𝜕𝜀
)

2

]].  

Using the same method as in Example 1, one may find the re-
currence relation in the following. 

𝐵𝑛+1(𝜀, 𝜁) = 𝐸−1 [
𝜉2

1−𝜉2 𝐸 [𝜀2 𝜕2𝐵𝑛

𝜕𝜀2 − (
𝜕𝐵𝑛

𝜕𝜀
)

2

]] ,     

𝐵0(𝜀, 𝜁) =  𝐸−1 [
𝜀(𝜉2+𝜉3)

1−𝜉2 +
𝜉4

(1−𝜉2)(1−2𝜉)
].  

Next, we have:  

𝐵0(𝜀, 𝜁) =  𝜀 𝑒𝜁 +
𝑒−𝜁(𝑒𝜁  −  1)

2
(2𝑒𝜁  +  1)

6
, 

𝐵1(𝜀, 𝜁) =
𝑒𝜁

2
 −

𝑒2𝜁

3
 −

𝑒−𝜁

6
, 

𝐵2(𝜀, 𝜁) = 0,      𝐵3(𝜀, 𝜁) = 0, 𝐵4(𝜀, 𝜁) = 0 ⋯. 

Then  𝐵(𝜀, 𝜁) = 𝜀𝑒𝜁. This is the exact solution to Eq. (11), 
however the HAA provided in [26] does not yield the exact solution. 
Fig. 4 shows the graphical representation of this solution, where 

the relative maximum error does not exceed  2 × 10−15 (see 
Tab.1). This result, achieved after just two iterations, highlights the 
efficiency of this method and its rapid convergence. 

Fig. 4.  Graphical representation of the exact solution to example 4 via 
ETM after only two iterations 

Tab. 1. Relative errors concerning example 4 

Point Elzaki relative error 

(0,0) 0 

(−2, −2) 0 

(2, 2) 2.4040 × 10−16 

(0.5, 1.8333) 0 
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(0.5, −1.8333) 1.7360 × 10−15 

(1.5, 1.5) 2.6424 × 10−16 

(−1.5, −1.5) 3.3171 × 10−16 

(1.1667, 0.6667) 1.8535 × 10−16 

Example 5. 

Let, 𝑘 = 1, 𝑎 = 𝜁, 𝑁𝐵 =
−2

(𝜀+𝜀2 )2 𝐵2    𝑎𝑛𝑑  𝑔(𝜀, 𝜁) = 0, 

then Eq. (2) becomes, 

𝜕2𝐵

𝜕𝜁2 − 𝜁
𝜕2𝐵

𝜕𝜀2 =
−2

(𝜀+𝜀2 )2 𝐵2,                                                       (13) 

𝐵(𝜀, 0) = 0,   
𝜕𝐵(𝜀, 0)

𝜕𝜁
= 𝜀 + 𝜀2 .                                               

This is the Cauchy problem for nonlinear wave-like equation 
with variable coefficients [26]. 

The method used in Example 1 can be adopted to find the re-
current relationship in the following. 

𝐵𝑛+1(𝜀, 𝜁) = 𝐸−1 [𝜉2𝐸 [𝜁
𝜕2𝐵𝑛

𝜕𝜀2
−

2

(𝜀 + 𝜀2 )2
(𝐵𝑛)2] ] ,    

𝐵0(𝜀, 𝜁) = (𝜀 + 𝜀2 )𝜁. 

Then:  

𝐵1(𝜀, 𝜁) = 0, 𝐵2(𝜀, 𝜁) = 0, 𝐵3(𝜀, 𝜁) = 0, ⋯,  

therefore 𝐵(𝜀, 𝜁) = (𝜀 + 𝜀2)𝜁. Again, this is the exact solution to 
Eq.(13), while HAA in [26] will not yield the exact solution. Fig. 5 
shows the graphical representation of this solution, where the rela-
tive error is zero because we found the exact solution using only 
one step. 

Fig. 5.   Graphical representation of the exact solution to example 5 via 
ETM after only one iteration 

5. DISCUSSION AND CONCLUSION 

This article has discussed the derivation, convergence, and ap-
plication of the ET technique to higher-order nonlinear PDEs. Five 
numerical issues were analyzed: three nonlinear higher-order hy-
perbolic equations and two nonlinear wave-like equations with var-
iable coefficient types. The ET method produces infinite power se-
ries solutions under suitable initial conditions, which nearly invaria-
bly spontaneously converge to the exact solution of the DEs. The 

obtained outcomes demonstrate the efficacy of the ET technique 
as mathematical tools for solving higher order nonlinear PDEs.  

These problems can be easily solved using the ET approach, 
as the findings of the nonlinear wave-like equations show, but they 
cannot be solved exactly with HAA [26]. The ET approach has ad-
vantages over MDM, HPM, and HAA due to its efficiency, ease of 
use, little computational footprint, and proven lightning-fast conver-
gence to an exact solution. Because of its efficiency and ease of 
use, we also want to extend its application to higher order fractional 
PDEs in subsequent work. Lastly, we believe that those who work 
in the modern technology and other areas will find this essay useful.  
Finally, we think this article will be helpful to people who operate in 
current technology and other fields. However, Elzaki transform 
and/or other transforms remain incapable of solving certain differ-
ential equations, especially when dealing with unsuitable initial con-
ditions or strongly nonlinear problems. 
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