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Abstract: The main idea of this study is to explore new features for the generalized (3+1)-dimensional Korteweg-De Vries problem.  
This equation may be used to model various physical processes in several domains, including nonlinear optics, oceanography, acoustic 
waves in plasma physics, and other areas where coupled wave dynamics are essential. The Hirota method and long-wave technique  
to reveal various wave solutions are under consideration. Complex N-soliton solutions, M-lump waves, and hybrid solutions between some 
types of soliton and M-lump solutions are offered. The obtained solutions are one-, two-, and three-M-lump waves and mixed soliton-lump, 
soliton-two-lump, and two-soliton-lump solutions. Also, one-soliton, two-soliton, three-soliton, and four-soliton solutions in complex form  
are offered. To better analyse and understand the propagation characteristics of these solutions, 3D and contour plots for gained solutions 
are drawn. As far as we know, these solutions are novel and have not been revealed. Since the KdV equation often describes shallow water 
waves with weakly nonlinear restoring forces, we are interested in the features that have yet to be studied. 
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1. INTRODUCTION 

Nonlinearity is a fascinating phenomenon in nature, and scien-
tists believe that nonlinear study is the most promising means of 
gaining a deeper understanding of how nature works. Investigating 
a wide range of nonlinear ordinary and partial differential equations 
is critical for mathematically describing complicated processes that 
change over time. These mathematical formulas are created in var-
ious fields, including economics, optical fibers, elasticity, plasma 
physics, solid-state physics, population ecology, infectious disease 
epidemiology, physics, and natural sciences. Soliton solutions of 
the previously mentioned phenomenon have been a fascinating 
and extraordinarily active topic of study for the past several dec-
ades, with the accompanying problem being the creation of ex-
act solutions to a large variety of nonlinear partial differential equa-
tions. As a result, mathematics and physical scientists have made 
significant efforts to develop exact wave solutions to certain 
NLPDEs and various practical and potent strategies, including Hi-
rota’s method [1][2][3][4], Backlund transformations [5], Pfaffian 
technique [6], the extended simplest equation approach [7], Rie-
mann–Hilbert method [8][9], modified Sardar sub-equation method 
[10], physics-informed neural networks algorithm [11], a unified 
method [12], bilinear Bäcklund transformation [13], modified F-ex-
pansion method [14], the symbolic computation and Hirota method 
[15], and so on. 

A soliton is a single, self-reinforcing wave that passes over a 
medium without ever dispersing or dissipating, preserving its shape 
and speed. Solitons are extremely stable and may maintain their 
form over long distances due to their unique nature. A lump solution 
is an analytical rational function solution that exists in all directions 
in space, and solitons are analytic solutions that are exponentially 

localized in all directions in space and time. They have previously 
been identified for nonlinear integrable equations. 

A well-known partial differential equation used to model the dis-
turbance of the surface of shallow water in the presence of solitary 
waves is the Korteweg-De Vries (KdV) equation. This equation in-
corporates leading-order nonlinearity and dispersion and can be 
used to study weakly nonlinear long waves. In shallow water, it de-
scribes small-amplitude waves with long wavelengths. The KdV 
equations have different types, such as the fifth-order KdV equation 
[16], the lattice potential KdV equation [17], generalized geophysi-
cal KdV equation [18], modified KdV equation [19], seventh-order 
KdV equation [20], Schwarzian KdV equation [21],  and many oth-
ers. 

Recently, the generalized Korteweg-De Vries (gKdV) equation 
in two dimensions became known and read as follows: 

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 + 𝑢𝑥 + 𝜕𝑥
−1𝑢𝑦𝑡 + 𝑢𝑦 + 𝑢𝑥𝑥𝑦 + 3𝑢𝑢𝑦 +

3𝑢𝑥𝜕𝑥
−1𝑢𝑦 = 0,                                                                               (1)                                                                                                   

where 𝜕𝑥
−1 ∙= ∫ ∙ 𝑑𝑥

𝑥

−∞
. It is comparable to the following equation 

when accounting for the potential 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝜃(𝑥, 𝑦, 𝑧, 𝑡) 

𝜃𝑥𝑡 + 6𝜃𝑥𝜃𝑥𝑥 + 𝜃𝑥𝑥𝑥𝑥 + 𝜃𝑥𝑥 + 𝜃𝑦𝑡 + 𝜃𝑥𝑦 + 𝜃𝑥𝑥𝑥𝑦 +

3𝜃𝑥𝜃𝑥𝑦 + 3𝜃𝑥𝑥𝜃𝑦 = 0.                                                                (2) 

Lu and Chen  [22] investigated this problem and found many 
distinct solutions in addition to integrability results. By modifying the 
preceding (2+1)-dimensional form (1), Ismaeel et al. [23], have cre-
ated a new (3+1)-dimensional integrable gKdV equation. 

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 + 𝑢𝑥 + 𝜕𝑥
−1𝑢𝑦𝑡 + 𝑢𝑦 + 𝑢𝑥𝑥𝑦 + 3𝑢𝑢𝑦 +

3𝑢𝑥𝜕𝑥
−1𝑢𝑦 + 𝛽𝑢𝑧 + 𝛽1𝜕𝑥

−1𝑢𝑦𝑧 + 𝛾𝜕𝑥
−1𝑢𝑦𝑦 = 0,                 (3) 

https://www.worldscientific.com/doi/abs/10.1142/S0129055X14300064
https://iopscience.iop.org/article/10.1088/0305-4470/36/5/319/meta
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where  𝛽, 𝛽1, 𝛾 are defined as non-zero constants. The Painlev´e 
test to reveal the integrability of the equation was used and found 
that when 𝛽 =  𝛽1, the equation becomes integrable. Therefore, 
we have 

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 + 𝑢𝑥 + 𝜕𝑥
−1𝑢𝑦𝑡 + 𝑢𝑦 + 𝑢𝑥𝑥𝑦 + 3𝑢𝑢𝑦 +

3𝑢𝑥𝜕𝑥
−1𝑢𝑦 + 𝛽𝑢𝑧 + 𝛽𝜕𝑥

−1𝑢𝑦𝑧 + 𝛾𝜕𝑥
−1𝑢𝑦𝑦 = 0.                    (4) 

The multiple soliton solutions to the equation (4) were reported 
by authors in Ref. [23]. In this paper, we use Hirota’s method, which 
is a direct method to obtain multiple soliton solutions to integrable 
nonlinear evolution equations. It is also possible to determine mul-
tiple soliton solutions using other methods, such as inverse scatter-
ing transform [24] and various other techniques. The advantage of 
Hirota’s method over the others is that it is algebraic rather than 
analytic. Therefore, Hirota's method provides the most efficient re-
sults when we just want to construct multiple soliton solutions. Also, 
applying the long-wave method on N-soliton solutions, we can offer 
M-lump waves. In the present study, one-, two-, and three-M-lump 
waves, three interaction phenomena of soliton with M-lump waves, 
and four types of complex multiple solutions are derived. To our 
knowledge, these propagation wave solutions have not been inves-
tigated before.  

Following is a summary of this study: In the second section, 
under the corresponding N-soliton solutions, the main idea is to 
construct M-lump solutions for equation (4), which is made possible 
by using a long wave method. In the third section, we offer and an-
alyze the characteristics of mixed solutions, a mix of lump and sol-
iton solutions. The fourth section is about the complex N-soliton so-
lutions for the studied equation. In the fifth section, results and dis-
cussion about constructed solutions are presented. The last part 
contains some discussions and conclusions from this effort. 

2. MULTIPLE M-LUMP SOLUTIONS 

To extract the soliton solutions to the Eq. (4), consider the rela-
tion 

𝑢 = 2(𝑙𝑜𝑔(𝑓))𝑥𝑥.                                                                        (5) 

Therefore, equation (4) could be shown to possess its bilinear 
form 

(
𝐷𝑡𝐷𝑥 + 𝐷𝑦𝐷𝑡 + 𝐷𝑥𝐷𝑦 + 𝐷𝑥

4 + 𝐷𝑥
3𝐷𝑦 +

𝐷𝑥
2 + 𝛽𝐷𝑥𝐷𝑧 + 𝛽𝐷𝑦𝐷𝑧 + 𝛾𝐷𝑦

2 )𝑓. 𝑓 = 0,              (6) 

where 𝑓 = 𝑓(𝑥, 𝑦, 𝑧, 𝑡) and 𝐷 is the Hirota derivative and stated 
as 

𝐷𝑥1
𝑟1𝐷𝑥2

𝑟2𝐷𝑥3
𝑟3𝐷𝑥4

𝑟4𝜒1. 𝜒2 = (𝜕𝑥1 − 𝜕𝑥1′
)
𝑟2
(𝜕𝑥2 − 𝜕𝑥2′

)
𝑟4
× 

(𝜕𝑥3 − 𝜕𝑥3′
)
𝑟3
(𝜕𝑥4 − 𝜕𝑥4′

)
𝑟4
×

𝜒1(𝑥1, 𝑥2, 𝑥3, 𝑥4)𝜒2(𝑥1
′ , 𝑥2

′ , 𝑥3
′ , 𝑥4

′ )|𝑥1=𝑥1′ ,𝑥2=𝑥2′ ,𝑥3=𝑥3′ ,𝑥4=𝑥4′
,   

where 𝑥1, 𝑥2, 𝑥3, 𝑥4 defines as independent variables, 𝜒1, 𝜒2are 
dependent variables, and constants 𝑟1, 𝑟2, 𝑟3, 𝑟4 ≥ 0. Generally, to 
offer the N-soliton solutions to the PDEs, we use the following for-
mula [25]:  

𝑓 ≡ 𝑓𝑁 = ∑ 𝑒𝑥𝑝(∑ 𝛺𝑚𝜑𝑚 +∑ 𝜇𝑚𝜇𝑛𝐴𝑚𝑛
(𝑁)
𝑚<𝑛

𝑁
𝑚=1 )𝜇=0,1   (7) 

The notation ∑  𝜇=0,1 represents the sum of all possible com-

posites 𝜇𝑚 = 0,1, for 𝑚 = 1,2, … ,𝑁.  

By taking the specific condition 𝑚 < 𝑛, the first three solutions 
of Eq. (7) have the form 

𝑓1=1+e𝛺1 , 
𝑓2 = 1 + 𝑒

𝛺1 + 𝑒𝛺2 + 𝐴12𝑒
𝛺1+𝛺2 , 

𝑓3 = 1 + 𝑒
𝛺1 + 𝑒𝛺2 + 𝑒𝛺3 + 𝐴12𝑒

𝛺1+𝛺2 + 𝐴13𝑒
𝛺1+𝛺3 +

𝐴23𝑒
𝛺2+𝛺3 + 𝐴123𝑒

𝛺1+𝛺2+𝛺3 ,                                        (8) 

where 

𝛺𝑚 = 𝑘𝑚(𝑥 + 𝑙𝑚𝑦 + 𝑗𝑚𝑧 + 𝑤𝑚𝑡) + 𝜆𝑚,                             (9) 

with dispersion relation   

𝑤𝑚 = −(1 + 𝑘𝑚
2 + 𝑗𝑚𝛽 +

𝑙𝑚
2𝛾

1+𝑙𝑚
),                                          (10) 

and 

𝑒𝐴𝑚𝑛 =
𝐾1

𝐾2
,                                                                                    (11) 

where 

𝐾1 = 3(𝑘𝑚 − 𝑘𝑛)(1 + 𝑙𝑚)(1 + 𝑙𝑛)(𝑘𝑚(1 + 𝑙𝑚) − 𝑘𝑛(1 +

𝑙𝑛)) − (𝑙𝑚 − 𝑙𝑛)
2𝛾,  

𝐾2 = 3(𝑘𝑚 + 𝑘𝑛)(1 + 𝑙𝑚)(1 + 𝑙𝑛)(𝑘𝑚 + 𝑘𝑛 + 𝑘𝑚𝑙𝑚 +
𝑘𝑛𝑙𝑛) − (𝑙𝑚 − 𝑙𝑛)

2𝛾.  

Here, 𝑘𝑚, 𝑙𝑚, 𝑗𝑚, 𝑤𝑚, 𝜆𝑚 are constants, whereas 𝛺𝑚 defines 
as the functions dependent on  𝑥, 𝑦, 𝑧, 𝑡. Now, to address the M-

lump wave solution, we apply the long-wave method by taking 𝑁 =

2, and assuming, 𝑘𝑚 → 0, 𝑒𝜆𝑚 = −1, and 
𝑘1

𝑘2
= 𝑂(1) in Eq. (7) 

give 

𝑓2 = 𝛷1𝛷2 + 𝐵12,                                                                       (12) 

where                                                

𝛷𝑚 = 𝑥 + 𝑙𝑚𝑦 + 𝑗𝑚𝑧 + 𝑤𝑚𝑡,                                      (13) 

𝑤𝑚 = −(1 + 𝑗𝑚𝛽 +
𝑙𝑚
2𝛾

1+𝑙𝑚
),                                        (14) 

𝐵𝑚𝑛 =
6(1+𝑙𝑚)(1+𝑙𝑛)(2+𝑙𝑚+𝑙𝑛)

(𝑙𝑚−𝑙𝑛)
2𝛾

.                                       (15) 

      Taking 𝑙1 = 𝑎1 + 𝑏1𝑖, 𝑙2 = 𝑙1
∗ and 𝑗1 = 𝑐1 + 𝑑1𝑖, 𝑗2 = 𝑗1

∗. 

Note that 𝑖 = √−1  and ∗ indicates the complex conjugation. From 
plugging  Eqs. (12-15) into Eq. (5), we have 

𝑢 = 2(𝑙𝑜𝑔(
(𝑥 ′ + 𝑎1𝑦

′ + 𝑐1𝑧
′)
2
+ (𝑏1𝑦

′ + 𝑑1𝑧
′)
2

−
3(1+𝑎1)((1+𝑎1)

2+𝑏1
2)

𝑏1
2𝛾

))

𝑥𝑥

             

   (16) 
where 

𝑥 ′ =
𝛾 𝑎1+ 𝛾 𝑏1

2+ 𝛾 𝑎1
2

𝑎1
2+𝑏1

2+2𝑎1+1
𝑡 − 𝑡,  

𝑦 ′ = 𝑦 −  𝛾 𝑡,    
𝑧 ′ = 𝑧 −  𝛽 𝑡.  

Equation (16) is a single M-lump wave as shown in Figure (1) 

for the gKdV equation with decaying as 𝑂 (
1

𝑥2
,
1

𝑦2
,
1

𝑧2
)  for 

|𝑥|, |𝑦|, |𝑧| → ∞  and move with the velocity  

𝑣𝑥 = 1 −
(𝑎1+𝑏1

2+𝑎1
2) 𝛾 

(𝑎1
2+𝑏1

2+2𝑎1+1)
,  

𝑣𝑦 =  𝛾 ,  
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𝑣𝑧 =  𝛽 .  

 

Fig. 1. Graphs of one-M-lump wave when 𝒛 = 𝟐, 𝒕 = 𝟐, 𝒂𝟏 =
𝟏

𝟓
, 𝒃𝟏 =

𝟎. 𝟓, 𝒄𝟏 = 𝟎. 𝟓, 𝒅𝟏 = 𝟎. 𝟓, 𝜷 = 𝟐, 𝜸 = −𝟏.  

The path followed by this wave is denoted by the following 
plane: 

𝑦 =
𝐺1

𝐺2
,. 

where 

𝐺1 = −(((𝑎1 + 1)
2 + 𝑏1

2)𝑑1(𝑧 − 𝑥𝛽)) − (𝑎1
2(1 + 𝑎1) +

(𝑎1 − 1)𝑏1
2)𝑑1𝑧𝛾 + 𝑏1(𝑎1(𝑎1 + 2) + 𝑏1

2)(𝑥 + 𝑐1𝑧)𝛾,  

𝐺2 = ((𝑎1 + 1)
2 + 𝑏1

2)(𝑏1 + 𝑏1𝑐1𝛽 − 𝑎1𝑑1𝛽) − 𝑏1(𝑎1
2 +

𝑏1
2)𝛾.  

The one-M-lump wave on this plane is depicted in Figure (2) at 
various time periods. 

 

Fig. 2. Plot of Eq. (12) for  𝒛 = 𝟐, 𝒂𝟏 =
𝟏

𝟓
, 𝒃𝟏 = 𝟎. 𝟓, 𝒄𝟏 = 𝟎. 𝟓, 𝒅𝟏 =

 𝟎. 𝟓, 𝜷 = 𝟐, 𝜸 = −𝟏 

As part of our analysis of the equation, we want to specify the 
characteristics of a double-M-lump wave by considering 𝑁 = 4 in 

Eq.  (7), and  𝑘𝑚 → 0, 𝑒𝜆𝑚 = −1 (𝑚 = 1,2,3,4), the outcome 
offers 

𝑓4 = 𝛷1𝛷2𝛷3𝛷4 + 𝐵12𝛷3𝛷4 + 𝑏13𝛷2𝛷4 + 𝐵14𝛷2𝛷3 +
𝐵23𝛷1𝛷4 + 𝐵24𝛷1𝛷3 + 𝐵34𝛷1𝛷2 + 𝐵12𝛷34 + 𝐵13𝐵24 +
𝐵14𝐵23,                                                                                     (17) 

where 𝛷1, 𝛷2, 𝛷3, 𝛷4, 𝑤𝑚 and 𝐵𝑚𝑛 (𝑛 < 𝑚) are explained with 
Eqs. (13), (14), and Eq. (15), respectively. The double-lump solu-
tion is obtained by combining equation (17) with the other findings 
in equation (5) and demonstrated in Figure 3. 

 
Fig. 3. Plots of 2-M-lump wave when 𝒛 = 𝟐, 𝒕 = 𝟐, 𝒂𝟏 = 𝟎. 𝟓, 𝒃𝟏 =

 𝟎. 𝟓, 𝒂𝟐 =
𝟏

𝟑
, 𝒃𝟐 =

𝟏

𝟑
, 𝒄𝟏 =

𝟏

𝟑
, 𝒅𝟏 =

𝟏

𝟑
, 𝒄𝟐 =

𝟏

𝟒
, 𝒅𝟐 =

𝟏

𝟒
, 𝜷 =

 𝟐, 𝜸 = −𝟏.     

For 3-M-lump of Eq. (4), we take 𝑘𝑚 → 0, 𝑒𝜆𝑚 = −1 (𝑚 =
1,… ,6) and considering 𝑁 = 6  in Eq. (7), shows 

𝑓6 = 𝛷1𝛷2𝛷3𝛷4𝛷5𝛷6 + 𝐵12𝐵34𝐵56 + 𝐵12𝐵35𝐵46 +
𝐵12𝐵45𝐵36 + 𝐵13𝐵24𝐵56 + 𝐵13𝐵25𝐵46 + 𝐵13𝐵45𝐵26 +
𝐵23𝐵14𝐵56 + 𝐵14𝐵25𝐵36 + 𝐵14𝐵35𝐵26 +
𝐵24𝐵15𝐵36𝐵34𝐵15𝐵26 + 𝐵23𝐵15𝐵46 + 𝐵23𝐵45𝐵16 +
𝐵24𝐵35𝐵16 + 𝐵34𝐵25𝐵16 + 𝛷2𝛷3𝛷4𝛷5𝐵16 +
𝛷2𝛷3𝛷5𝛷6𝐵14 +𝛷2𝛷3𝛷4𝛷6𝐵15 + 𝛷3𝛷4𝛷5𝛷6𝐵12 +
𝛷2𝛷4𝛷5𝛷6𝐵13 +𝛷1𝛷2𝛷4𝛷6𝐵35 + 𝛷1𝛷2𝛷4𝛷5𝐵36 +
𝛷1𝛷4𝛷5𝛷6𝐵23 +𝛷1𝛷3𝛷5𝛷6𝐵24 + 𝛷1𝛷3𝛷4𝛷6𝐵25 +
𝛷1𝛷3𝛷4𝛷5𝐵26 +𝛷1𝛷2𝛷3𝛷4𝐵56 + 𝛷1𝛷2𝛷3𝛷6𝐵45 +
𝛷1𝛷2𝛷3𝛷5𝐵46 +𝛷1𝛷2𝛷5𝛷6𝐵34 + 𝛷1𝛷2𝐵34𝐵56 +
𝛷1𝛷2𝐵35𝐵46 + 𝛷1𝛷2𝐵45𝐵36 +𝛷1𝐵23𝛷5𝐵46 +

𝛷1𝐵23𝛷4𝐵56 + 𝛷1𝐵23𝐵45𝛷6 +𝛷1𝛷3𝐵24𝐵56 +
𝛷1𝛷6𝐵24𝐵35 + 𝛷1𝛷5𝐵24𝐵36 + 𝛷1𝛷3𝐵25𝐵46 +
𝛷1𝛷6𝐵34𝐵25 + 𝛷1𝛷4𝐵25𝐵36 +𝛷1𝛷3𝐵45𝐵26 +
𝛷1𝛷5𝐵34𝐵26 + 𝛷1𝛷4𝐵35𝐵26 +𝛷4𝛷5𝐵12𝐵36 +
𝛷3𝛷4𝐵12𝐵56 + 𝛷3𝛷6𝐵12𝐵45 +𝛷3𝛷5𝐵12𝐵46 +
𝛷5𝛷6𝐵12𝐵34 + 𝛷4𝛷6𝐵12𝐵35 +𝛷5𝛷6𝐵13𝐵24 +
𝛷4𝛷6𝐵13𝐵25 + 𝛷4𝛷5𝐵13𝐵26 +𝛷2𝛷4𝐵13𝐵56 +
𝛷2𝛷6𝐵13𝐵45 + 𝛷2𝛷5𝐵13𝐵46 +𝛷2𝛷3𝐵14𝐵56 +
𝛷2𝛷6𝐵14𝐵35 + 𝛷2𝛷5𝐵14𝐵36 + 𝛷5𝛷6𝐵23𝐵14 +
𝛷3𝛷6𝐵14𝐵25+𝛷3𝛷5𝐵14𝐵26+𝛷4𝛷6𝐵23𝐵15+
𝛷3𝛷6𝐵24𝐵15+𝛷3𝛷4𝐵15𝐵26+𝛷2𝛷3𝐵15𝐵46+
𝛷2𝛷6𝐵34𝐵15+𝛷24𝐵15𝐵36+𝛷2𝛷4𝐵35𝐵16+
𝛷4𝛷5𝐵23𝐵16+𝛷3𝛷5𝐵24𝐵16+𝛷3𝛷4𝐵25𝐵16+
𝛷2𝛷3𝐵45𝐵16+𝛷2𝛷5𝐵34𝐵16.                                    (18) 

 

 

Fig. 4. Plots of 3-M-lump wave when 𝒛 = 𝟐, 𝒕 = 𝟐, 𝒂𝟏 = 𝟎. 𝟓, 𝒃𝟏 =

 𝟎. 𝟓, 𝒂𝟐 =
𝟏

𝟑
, 𝒃𝟐 =

𝟏

𝟑
, 𝒂𝟑 =

𝟏

𝟒
, 𝒃𝟑 =

𝟏

𝟒
, 𝒄𝟏 = 𝟎. 𝟓, 𝒅𝟏 =

 𝟎. 𝟓, 𝒄𝟐 =
𝟏

𝟓
, 𝒅𝟐 =

𝟏

𝟓
, 𝒄𝟑 =

𝟏

𝟔
, 𝒅𝟑 =

𝟏

𝟔
, 𝜷 = 𝟐, 𝜸 = −𝟏  
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We should know that 𝛷𝑝(𝑝 = 1,… ,6), 𝑤𝑚, and 𝐵𝑚𝑛  are de-

picted in Eq. (13), Eq. (14) and Eq. (15), respectively. By introduc-
ing Eq. (18) into Eq. (5), a 3-M-lump solution is displayed in Fig. 4. 
It is important to understand that 𝑙1 = 𝑎1 + 𝑏1𝑖, 𝑙2 = 𝑎2 + 𝑏2𝑖, 
𝑙3 = 𝑎3 + 𝑏3𝑖, 𝑙4 = 𝑙1

∗, 𝑙5 = 𝑙2
∗ , and 𝑙6 = 𝑙3

∗ . 

3. COLLISION PHENOMENA 

Through a long-wave approach and setting 𝑘𝑚 → 0, with 
𝑘1

𝑘2
=

𝑂(1), 𝑒𝜆𝑚 = −1 for 𝑚 = 1,2, and 𝑁 = 3, therefore 𝑓3 reads 

𝑓3 = 𝛷1𝛷2 + 𝐵12 + 𝜅1𝑒
𝛹3 ,                                                      (19) 

where 

𝜅1 = 𝛷1𝛷2 + 𝐵12 + 𝐶23𝛷1 + 𝐶13𝛷2 + 𝐶13𝐶23,                      (20)                                                                            

𝐶𝑚𝑛 = −
6𝑘𝑛(1+𝑙𝑚)(1+𝑙𝑛)(2+𝑙𝑚+𝑙𝑛)

3𝑘𝑛
2(1+𝑙𝑚)(1+𝑙𝑛)

2−(𝑙𝑚−𝑙𝑛)
2𝛾
.                                     (21)                                                              

By combining Eq. (19) with Eq. (5), the outcome is a combina-
tion of a single-lump with a single-soliton solution (see Fig. 5). 

 
Fig. 5. Plots of M-lump with soliton solution when 𝒛 = 𝟏, 𝒕 = 𝟐, 𝒂𝟏 =

 𝟎. 𝟓, 𝒃𝟏 = 𝟎. 𝟓, 𝒂𝟐 =
𝟏

𝟑
, 𝒃𝟐 =

𝟏

𝟑
, 𝒌𝟑 = 𝟏, 𝒍𝟑 = 𝟏, 𝒋𝟑 =

𝟐, 𝝀𝟑 =  𝟐𝟎, 𝜷 = 𝟐, 𝜸 = −𝟏 

 
Fig. 6. Graphs of M-lump with a 2-soliton solution when 𝒛 = 𝟏, 𝒕 =

 𝟐, 𝒂𝟏 = 𝟎. 𝟓, 𝒃𝟏 = 𝟎. 𝟓, 𝒄𝟏 =
𝟏

𝟑
, 𝒅𝟏 =

𝟏

𝟑
, 𝒌𝟑 = 𝟏, 𝒍𝟑 =

𝟏, 𝒋𝟑 =  𝟐, 𝝀𝟑 = 𝟏𝟎, 𝒌𝟒 = 𝟏, 𝒍𝟒 = 𝟐, 𝒋𝟒 = 𝟑, 𝝀𝟒 = 𝟐𝟎,𝜷 =
𝟏, 𝜸 = −𝟓   

Setting 𝑁 = 4  in Eq. (7), and 𝑘𝑚 → 0, 
𝑘1

𝑘2
= 𝑂(1), and 

𝑒𝜆𝑚 = −1 for 𝑚 = 1,2, we set up 

𝑓4 = 𝛷1𝛷2 + 𝐵12 + 𝜅1𝑒
𝛹3 + 𝜅2𝑒

𝛹4 + 𝐴34𝑒
𝛹3+𝛹4(𝜅1 +

𝜅2 −𝛷1𝛷2 − 𝐵12 + 𝐶13𝐶24 + 𝐶14𝐶23),                                (22) 

where 

𝜅2 = 𝛷1𝛷2 + 𝐵12 + 𝐶24𝛷1 + 𝐶14𝛷2 + 𝐶14𝐶24.                   (23) 

Eq. (22) can be substituted into Eq. (5) to provide a result that 
combines the properties of a double-soliton solution and a single-
M-lump solution (refer to Fig. 6).  

If 𝑁 = 5 and taking the limit 𝑘𝑚 → 0 and 𝑒𝜆𝑚 = −1 for 
𝑚 = 1,2,3,4, in Eq. (7), we get 

𝑓5 = 𝛷1𝛷2𝛷3𝛷4 + 𝐵34𝛷1𝛷2 + 𝐵24𝛷1𝛷3 + 𝐵23𝛷1𝛷4 +
𝐵14𝛷2𝛷3 + 𝐵13𝛷2𝛷4 + 𝐵12𝛷3𝛷4 + 𝑄𝑒

𝛹5 + 𝐵14𝐵23 +
𝐵13𝐵24 + 𝐵12𝐵34                                                                          (24) 

where 
𝑄 = 𝛷1𝛷2𝛷3𝛷4 + 𝐶45𝛷1𝛷2𝛷3 + 𝐶15𝛷2𝛷3𝛷4

+ 𝐶25𝛷1𝛷3𝛷4 + 𝐶35𝛷1𝛷2𝛷4
+ (𝐵34 + 𝐶35𝐶45)𝛷1𝛷2
+ (𝐵24 + 𝐶25𝐶45)𝛷1𝛷3
+ (𝐵14 + 𝐶15𝐶45)𝛷2𝛷3
+ (𝐵23 + 𝐶25𝐶35)𝛷1𝛷4
+ (𝐵13 + 𝐶15𝐶35)𝛷2𝛷4
+ (𝐵12 + 𝐶15𝐶25)𝛷3𝛷4
+ (𝐵34𝐶25 + 𝐵24𝐶35 + 𝐵23𝐶45
+ 𝐶25𝐶35𝐶45)𝛷1
+ (𝐵34𝐶15 + 𝐵14𝐶35 + 𝐵13𝐶45
+ 𝐶15𝐶35𝐶45)𝛷2
+ (𝐵24𝐶15 + 𝐵14𝐶25 + 𝐵12𝐶45
+ 𝐶15𝐶25𝐶45)𝛷3
+ (𝐵23𝐶15 + 𝐵13𝐶25 + 𝐵12𝐶35
+ 𝐶15𝐶25𝐶35)𝛷4 + 𝐵14𝐵23 + 𝐵13𝐵24
+ 𝐵12𝐵34 + 𝐵34𝐶15𝐶25 + 𝐵24𝐶15𝐶35
+ 𝐵14𝐶25𝐶35 + 𝐵23𝐶15𝐶45 + 𝐵13𝐶25𝐶45
+ 𝐵12𝐶35𝐶45 + 𝐶15𝐶25𝐶35𝐶45.  

The outcome shown in Figure 7 is the observable feature, 
which is obtained by combining Eq. (24) and Eq. (5) to illustrate an 
interaction of a two-M-lump with a soliton solution. A complete list 
of all constants and functions can be found in this article.   

 
Fig. 7. Plots of 2-M-lump with soliton solution when 𝒛 = 𝟏, 𝒕 = 𝟐, 𝒂𝟏 =

𝟎. 𝟓, 𝒃𝟏 = 𝟎. 𝟓, 𝒂𝟐 =
𝟏

𝟑
, 𝒃𝟐 =

𝟏

𝟑
, 𝒄𝟏 =

𝟏

𝟒
, 𝒅𝟏 =

𝟏

𝟒
, 𝒄𝟐 =

𝟏

𝟓
, 𝒅𝟐 =

𝟏

𝟓
, 𝒌𝟓 = 𝟏, 𝒍𝟓 = 𝟏, 𝒋𝟓 = 𝟐, 𝝀𝟓 = 𝟐𝟎, 𝜷 = 𝟏, 𝜸 = −𝟓 

4. COMPLEX MULTI-SOLITON SOLUTIONS 

Here, we explore the complexity of multi-solutions to the stud-
ied equation to explore new features of solutions. 
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4.1. The complex one-soliton wave 

First, to construct the complex one-soliton wave, the assump-
tion is 

𝑔1=1+ie
𝑘1(𝑥+𝑙1𝑦+𝑗1𝑧−(1+𝑘1

2+𝑗1𝛽+
𝑙1
2𝛾

1+𝑙1
)𝑡)+𝛼1

.                       (25) 

Substituting this assumption into Eq.(5), the result is 

𝑢 = −
2𝑖𝑘1

2𝑒

𝛼1+𝑘1(𝑥+𝑙1𝑦+𝑗1𝑧−𝑡(1+𝑘1
2+𝑗1𝛽+

𝑙1
2𝛾

1+𝑙1
))

(

 
 
𝑒

𝛼1+𝑘1(𝑥+𝑙1𝑦+𝑗1𝑧−𝑡(1+𝑘1
2+𝑗1𝛽+

𝑙1
2𝛾

1+𝑙1
))

−𝑖

)

 
 

2.                    (26) 

This solution is shown graphically in Fig. (8).  

 

 
Fig. 8. Graphs of complex one-soliton wave are plotted for 𝑧 = 1, 𝑡 =

2, 𝑘1 = 1, 𝑙1 = 1, 𝑗1 = 2, 𝛼1 = 1, 𝛽 = 1, 𝛾 = 2: a) Real part,   
b) Imaginary part, c) Contour plot of real part, d) Contour plot of  
imaginary part   

4.2. The complex two-soliton solution 

Here, the objective is to drive a double-soliton solution, where 
the assumption is 

𝑔2 = 1 + 𝑖𝑒
𝜃1 + 𝑖𝑒𝜃2 + 𝑆12𝑒

𝜃1+𝜃2 .                                        (27) 

Putting this equation into Eq. (5), the result yields 

𝑢 =
2(𝑔2

𝜕2𝑔2
𝜕𝑥2

−
𝜕𝑔2
𝜕𝑥

2
)

𝑔2
2 ,                                                                   (28) 

where  

𝜃1 = 𝑘1(𝑥 + 𝑙1𝑦 + 𝑗1𝑧 + 𝜔1𝑡) + 𝛼1, 𝜃2 = 𝑘2(𝑥 + 𝑙2𝑦 +

𝑗2𝑧 + 𝜔2𝑡) + 𝛼2,  𝜔1 = −(1 + 𝑘1
2 + 𝑗1𝛽 +

𝑙1
2𝛾

1+𝑙1
), 𝜔2 =

−(1 + 𝑘2
2 + 𝑗2𝛽 +

𝑙2
2𝛾

1+𝑙2
)  

and 

 𝑆12 = 

(𝑙1−𝑙2)
2𝛾−3(𝑘1−𝑘2)(1+𝑙1)(1+𝑙2)(𝑘1(1+𝑙1)−𝑘2(1+𝑙2))

3(𝑘1+𝑘2)(1+𝑙1)(1+𝑙2)(𝑘1+𝑘2+𝑘1𝑙1+𝑘2𝑙2)−(𝑙1−𝑙2)
2𝛾
.   

 This solution represents a complex two-soliton solution, and it 
is drawn in Fig. (9). 

 

 
Fig. 9. Graphs of complex two-soliton wave are plotted for 𝑧 = 1, 𝑡 =

2, 𝑘1 = 1, 𝑘2 = 1, 𝑙1 = 1, 𝑙2 = 0.5, 𝑗1 = 0.5, 𝑗2 = 0.5, 𝛼1 =
3, 𝛼2 = 6, 𝛽 = 1, 𝛾 = 2:  a) Real part, b) Imaginary part, c)      
Contour plot of real part, d) Contour plot of imaginary part   

4.3. The complex three-soliton solution 

To report a three-soliton solution in complex form, let 

𝑔3 = 1 + 𝑖𝑒
𝜃1 + 𝑖𝑒𝜃2 + 𝑖𝑒𝜃3 + 𝑆12𝑒

𝜑1+𝜃2 + 𝑆13𝑒
𝜃1+𝜃3

+ 𝑆23𝑒
𝜃2+𝜃3 + 𝑖𝑆123𝑒

𝜃1+𝜃2+𝜃3 . 

   (29) 
Substituting this equation into Eq. (5), we have 

𝑢 =
2(𝑔3

𝜕2𝑔3
𝜕𝑥2

−
𝜕𝑔3
𝜕𝑥

2
)

𝑔3
2 .                                                                        (30) 

The function 𝜃𝑚 is defined as  

𝜃𝑚 = 𝑘𝑚(𝑥 + 𝑙𝑚𝑦 + 𝑗𝑚𝑧 + 𝜔𝑚𝑡) + 𝛼𝑚,                           (31) 

with dispersion relation   

𝜔𝑚 = −(1 + 𝑘𝑚
2 + 𝑗𝑚𝛽 +

𝑙𝑚
2𝛾

1+𝑙𝑚
),                                       (32) 

where the constant 𝑆123 = 𝑆12𝑆13𝑆23 123 12 13 23S S S S= .  

The constant 𝑆𝑚𝑛 is stated as 

𝑆𝑚𝑛 =
𝑍1

𝑍2
,                                                                                 (33) 

where 

𝑍1 = (𝑙𝑚 − 𝑙𝑛)
2𝛾 − 3(𝑘𝑚 − 𝑘𝑛)(1 + 𝑙𝑚)(1 + 𝑙𝑛)(𝑘𝑚(1 +

𝑙𝑚) − 𝑘𝑛(1 + 𝑙𝑛)),  

𝑍2 = 3(𝑘𝑚 + 𝑘𝑛)(1 + 𝑙𝑚)(1 + 𝑙𝑛)(𝑘𝑚 + 𝑘𝑛 + 𝑘𝑚𝑙𝑚 +
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𝑘𝑛𝑙𝑛) − (𝑙𝑚 − 𝑙𝑛)
2𝛾.  

The result of this solution is presented in Fig. (10), which is a 
complex-three-soliton solution. 

 

 
Fig. 10. Graphs of complex three-M-lump wave are plotted for 𝑧 =

1, 𝑡 = 2, 𝑘1 = 1, 𝑘2 = 1, 𝑘3 = 2, 𝑙1 = 1, 𝑙2 = 0.5, 𝑙3 =
1

3
, 𝑗1 = 0.5, 𝑗2 = 0.5, 𝑗3 =

1

3
, 𝛼1 = 3, 𝛼2 = 6, 𝛼3 = 9, 𝛽 =

1, 𝛾 = 2:  a) Real part, b) Imaginary part, c) Contour plot of real 
part, d) Contour plot of imaginary part    

4.4. The complex four-soliton solution 

To report a four-soliton solution in complex form, let 

𝑔4 = 1 + 𝑖𝑒
𝜑1 + 𝑖𝑒𝜑2 + 𝑖𝑒𝜑3 + 𝑖𝑒𝜑4 + 𝑆12𝑒

𝜑1+𝜑2 + 
𝑆13𝑒

𝜑1+𝜑3 + 𝑆14𝑒
𝜑1+𝜑4 + 𝑆23𝑒

𝜑2+𝜑3 + 𝑆24𝑒
𝜑2+𝜑4  

+𝑆34𝑒
𝜑3+𝜑4 + 𝑖𝑆123𝑒

𝜑1+𝜑2+𝜑3 + 𝑖𝑆124𝑒
𝜑1+𝜑2+𝜑4 + 

𝑖𝑆234𝑒
𝜑2+𝜑3+𝜑4 + 𝑆1234𝑒

𝜑1+𝜑2+𝜑3+𝜑4(34) 

where 𝑆𝑖𝑗𝑘 = 𝑆𝑖𝑗𝑆𝑖𝑘𝑆𝑗𝑘 and 𝑆1234 = 𝑆123𝑆124𝑆234  are defined 

in Eq. (33). Substituting this equation into Eq. (5), we have 

𝑢 =
2(𝑔4

𝜕2𝑔4
𝜕𝑥2

−
𝜕𝑔4
𝜕𝑥

2
)

𝑔4
2 .                                                                                (35) 

This equation represents a complex four-soliton solution (see 
Fig. (11)). The research paper contains all required constants and 
functions. 

 

 
Fig. 11. Graphs of complex four-soliton wave are plotted for 𝑧 = 1, 𝑡 =

2, 𝑘1 = 1, 𝑘2 = 1, 𝑘3 = 2, 𝑘4 = 2, 𝑙1 = 1, 𝑙2 = 0.5, 𝑙3 =
1

3
, 𝑙4 =

1

4
, 𝑗1 = 0.5, 𝑗2 = 0.5, 𝑗3 =

1

3
, 𝑗4 =

1

4
, 𝛼1 = 3, 𝛼2 =

6, 𝛼3 = 9, 𝛼4 = 12, 𝛽 = 1, 𝛾 = 2: a) Real part, b) Imaginary 
part, c) Contour plot of real part, d) Contour plot of imaginary part   

5. RESULTS AND DISCUSSION 

The gKdV equation has been investigated, and some novel so-
lutions have been presented. A logarithmic variable transform is 
considered to transform the studied equation to the Hirota bilinear 
form. Via Hirota bilinear and long-wave methods, novel physical 
features to the considered equation are derived. The one-M-lump 
wave is shown in Fig. 1, and the motion of this wave, which moves 
on a straight line, is presented in Fig. 2. In Fig. 3 and Fig. 4, the 
double-, and triple-M-lump solutions have been drawn with the cor-
responding contour plots. Hybrid solutions are also derived. In Fig. 
5 shows, mixed single soliton with a single M-lump wave, in Fig. 6 
shows, mixed double soliton with a single M-lump wave, and Fig. 7 
shows, mixed single soliton with a double M-lump wave with corre-
sponding contour plots. Moreover, the complexiton soliton solutions 
are also constructed. In Fig. 8, the real and imaginary parts of a 
complex one-soliton solution are sketched. In Fig. 9, the real and 
imaginary parts of a complex two-soliton solution are drawn. The 
triple-soliton solution in complex form is derived in Fig. 10, and in 
Fig. 11, the behaviours of the four-soliton solution are presented. 

6. CONCLUSION 

We have considered the gKdV equation as a mathematical 
model of waves on shallow water surfaces. As far as macroscale 
processes and phenomena are concerned, KdV remains the most 
complete and arguably most useful model. First, the (3+1)-dimen-
sional gKdV equation via variable transform is converted to the Hi-
rota bilinear form. The M-lump wave solutions, namely one-lump, 
two-lump, and three-lump solutions, have been explored by apply-
ing the long-wave technique on the N-soliton solutions, which were 
constructed via the Hirota method. The interaction solutions via uti-
lizing both Hirota bilinear and long-wave methods have been de-
rived. These physical phenomena are one-soliton-lump, two-soli-
ton-lump, and two-lump-soliton solutions. By virtue of the Hirota 
method, the N-complex-soliton solutions in complex form are con-
structed. The propagation characteristics of all gained solutions are 
shown graphically in 3D and contour plots. All phenomena pre-
sented in this work are verified by plugging them back into the stud-
ied equation. All presented physical phenomena are novel and 
have not been presented in the previously published study. In future 
work, these methods could be applied to more integrable NPDE 
and complex PDE to explore new features of solutions.  
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