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Abstract: This paper introduces a class of fractional discrete-time compartmental linear systems. The fundamental system properties,  
including controllability and observability, are analysed. Furthermore, the eigenvalue assignment problem related with this class of systems 
is addressed. Theoretical considerations are demonstrated through a numerical example. 

Key words: discrete-time system, fractional, compartmental, observability, controllability

1. INTRODUCTION 

Fractional calculus is an extension of classical integer-order 
calculus that involves derivatives and integrals of non-integer (frac-
tional) orders. The mathematical foundations of fractional calculus 
are presented in various monographs, such as [12], [13], and [14]. 
The applications of fractional calculus across various fields of sci-
ence and engineering have attracted considerable attention in re-
cent years. It has been used in areas such as mechanics, electrical 
engineering, biology, chemistry, and signal processing [13, 16, 18]. 
The fractional-order modeling of real-world phenomena are often 
more accurate than classical integer-order models. The theory of 
fractional systems is an expanding field that explores properties of 
systems, including stability, controllability, observability, realisabil-
ity, and more [1, 2, 4, 7, 11, 15, 17, 19]. Standard and positive frac-
tional linear systems have been discussed in monographs [8] and 
[10], respectively. A dynamical system is termed positive when its 
state variables and outputs take nonnegative values for any 
nonnegative inputs. Numerous models exhibiting positive behav-
iour can be found across fields such as engineering, biology, med-
icine, and economics. A comprehensive overview of research in 
positive systems theory is provided in [3, 6]. 

In the modelling process, compartmental linear systems are fre-
quently used. These systems consist of separate compartments 
that are interconnected, each representing a subsystem containing 
a specific material. The transfer of material between compartments 
is governed by linear equations [5]. The fractional continuous-time 
compartmental systems have been studied in [9]. 

In this paper, fractional discrete-time compartmental time-invar-
iant linear systems are introduced and analysed. To the best of the 
authors’ knowledge, the problems of controllability, observability, 
and eigenvalue assignment have not yet been addressed for frac-
tional discrete-time linear systems. This paper extends the frac-
tional-order systems theory to this concern. A key advantage of dis-
crete-time fractional-order numerical models is their ability to de-
scribe complex dynamical systems with non-local, memory-based 
interactions, providing more accurate and nuanced representa-
tions. These models are suitable for real-world processes where 

the future state depends not only on the current value but also on 
the entire history of the system. 

The structure of the paper is as follows. Section 2 provides the 
fundamental definitions and theorems related to fractional and pos-
itive linear systems. In Section 3, the concept of fractional discrete-
time compartmental linear systems is introduced. Section 4 is de-
voted to the analysis of controllability and observability of the pro-
posed systems, while Section 5 addresses the eigenvalue assign-
ment problem. Finally, concluding remarks are presented in  
Section 6. 

The notation used in this paper is as follows: ℜ - the set of real 
numbers, ℜ𝑛×𝑚 - the set of 𝑛 × 𝑚 real matrices, 𝑍+ - the set of 

nonnegative integers, ℜ+
𝑛×𝑚 - the set of 𝑛 × 𝑚 matrices with 

nonnegative entries and ℜ+
𝑛 = ℜ+

𝑛×1, 𝐼𝑛- the 𝑛 × 𝑛 identity ma-
trix. 

2. STANDARD LINEAR DISCRETE-TIME SYSTEMS 

Let us consider a linear discrete-time system represented by 
the following equations. 

𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 , 𝑖 ∈ 𝑍+ = {0,  1,  . . . },                   (2.1a) 

𝑦𝑖 = 𝐶𝑥𝑖 ,                                                                  (2.1b) 

with the initial condition 𝑥0, where 𝑥𝑖 ∈ ℜ𝑛 represents the state 
vector, 𝑢𝑖 ∈ ℜ𝑚 the control input, and 𝑦𝑖 ∈ ℜ𝑝 the system output, 
while 𝐴 ∈ ℜ𝑛×𝑛, 𝐵 ∈ ℜ𝑛×𝑚 and 𝐶 ∈ ℜ𝑝×𝑛 are the correspond-
ing system matrices. 

Definition 2.1. [6, 8] The linear system (2.1) is called (internally) 

positive if 𝑥𝑖 ∈ ℜ+
𝑛  and 𝑦𝑖 ∈ ℜ+

𝑝
, 𝑖 ∈ 𝑍+ for any initial conditions 

𝑥0 ∈ ℜ+
𝑛  and all inputs 𝑢𝑖 ∈ ℜ+

𝑚, 𝑖 ∈ 𝑍+. 
Theorem 2.1. [6, 8] The linear system (2.1) is positive if and 

only if: 

𝐴 ∈ ℜ+
𝑛×𝑛, 𝐵 ∈ ℜ+

𝑛×𝑚, 𝐶 ∈ ℜ+
𝑝×𝑛

                                      (2.2) 

Definition 2.2. The linear system (2.1) is called asymptotically 
stable if 𝑙𝑖𝑚

𝑖→∞
𝑥𝑖 = 0 for 𝑢𝑖 = 0 and any initial 𝑥0 ∈ ℜ𝑛 . 

Theorem 2.2. [6, 8] The linear system (2.1) is asymptotically 
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stable if the matrix A is a Schur matrix. 
Theorem 2.3. [6, 8] The positive linear system (2.1) is asymp-

totically stable if and only if: 
1. all coefficients of the polynomial  

𝑝𝐴(𝑧) = 𝑑𝑒𝑡[ 𝐼𝑛(𝑧 + 1) − 𝐴] = 𝑧𝑛 +
𝑎𝑛−1𝑧

𝑛−1+. . . +𝑎1𝑧 + 𝑎0                                                    (2.3) 

are positive, i.e., 𝑎𝑖 > 0 for 𝑖 = 0,1, . . . , 𝑛 − 1. 
2. there exists strictly positive vector  

𝜆𝑇 = [𝜆1 ⋯ 𝜆𝑛]𝑇, 𝜆𝑘 > 0, 𝑘 = 1, . . . , 𝑛 such that  

𝐴𝜆 < 0 or 𝜆𝑇𝐴 < 0.         (2.4) 

Let us now examine a linear fractional discrete-time system 
given by the following equations: 

Δ
𝛼𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 , 𝑖 ∈ 𝑍+ = {0,  1, . . . }, 0 < 𝛼 < 1

                                                                                 (2.5a) 
where 𝑥𝑖 ∈ ℜ𝑛, 𝑢𝑖 ∈ ℜ𝑚 and 𝑦𝑖 ∈ ℜ𝑝 are the state, input and 
output vectors and 𝐴 ∈ ℜ𝑛×𝑛, 𝐵 ∈ ℜ𝑛×𝑚, 𝐶 ∈ ℜ𝑝×𝑛 and 

Δ
𝛼𝑥𝑖 = ∑ (−1)𝑗 (

𝛼
𝑗) 𝑥𝑖−𝑗

𝑖
𝑗=0   

(
𝛼
𝑗 ) = {

1 for 𝑗 = 0
𝛼(𝛼−1)...(𝛼−𝑗+1)

𝑗!
for 𝑗 = 1,2, . . .

       (2.5b) 

is the fractional α-order difference of 𝑥𝑖. 
Substitution of (2.5b) into (2.5a) yields 

𝑥𝑖+1 = 𝐴𝛼𝑥𝑖 − ∑ 𝑐𝑗𝑥𝑖−𝑗+1
𝑖+1
𝑗=2 + 𝐵𝑢𝑖, 𝑖 ∈ 𝑍+,    (2.6a) 

where 

𝐴𝛼 = 𝐴 + 𝐼𝑛𝛼, 𝑐𝑗 = (−1)𝑗+1 (
𝛼
𝑗 ) ,  𝑗 = 1,2, . ...    (2.6b) 

Definition 2.3. [6, 8] The fractional system (2.5) is called (inter-
nally) positive if 𝑥𝑖 ∈ ℜ+

𝑛 , 𝑖 ∈ 𝑍+ for any initial conditions 𝑥0 ∈
ℜ+

𝑛 . 
Theorem 2.4. [6, 8] The fractional system (2.5) is positive if and 

only if  

𝐴𝛼 ∈ ℜ+
𝑛×𝑛.          (2.7) 

Definition 2.4. [6, 8] The fractional positive system (2.5) is called 
asymptotically stable if 

𝑙𝑖𝑚
𝑖→∞

𝑥𝑖 = 0 for all 𝑥0 ∈ ℜ+
𝑛 .         (2.8) 

Theorem 2.5. [6, 8] The fractional positive system (2.5) is as-
ymptotically stable if and only if one of the equivalent conditions is 
satisfied: 
1. all coefficients of the polynomial  

𝑝𝐴(𝑧) = 𝑑𝑒𝑡[ 𝐼𝑛(𝑧 + 1) − 𝐴] = 𝑧𝑛 +
𝑎𝑛−1𝑧

𝑛−1+. . . +𝑎1𝑧 + 𝑎0 (2.9) 

are positive, i.e., 𝑎𝑖 > 0 for 𝑖 = 0,1, . . . , 𝑛 − 1. 
2. there exists strictly positive vector 

𝜆𝑇 = [𝜆1 ⋯ 𝜆𝑛]𝑇, 𝜆𝑘 > 0, 𝑘 = 1, . . . , 𝑛 such that 

[𝐴 − 𝐼𝑛]𝜆 < 0 or 𝜆𝑇[𝐴 − 𝐼𝑛] < 0.      (2.10) 

3. STATE EQUATIONS OF THE FRACTIONAL  
DISCRETE-TIME LINEAR COMPARTMENTAL SYSTEMS 

Let us consider the compartmental discrete-time time invariant 
system consisting of 𝑛 compartments (Fig.1). 

 
Fig. 1. The 𝑖 -th subsystem of the compartmental system 

Let: 𝑥𝑖 = 𝑥𝑖(𝑘), 𝑖 = 1, . . . , 𝑛 be the amount of a material of 
the 𝑖 -th compartmental at the time instant 𝑘, 
𝐹𝑖𝑗(𝑘) > 0 be the output flow of the material from the 𝑗 -th to the 

𝑖 -th compartmental (𝑖 ≠ 𝑗), between the 𝑘 -th and 𝑘 + 1-th time 
instants, 
𝐹0𝑖(𝑘) > 0 be the output of the material from the 𝑖 -th (𝑖 =
1, . . . , 𝑛) compartmental to the environment, 
𝑢𝑖 = 𝑢𝑖(𝑘) be the output flow of the material to the 𝑖 -th compart-
mental from environment. 

It is assumed that the input material is instantaneously mixed 
with the material already present in the compartment and that 
𝐹𝑖𝑗(𝑘) depends linearly on 𝑥(𝑘), i.e., 

𝐹𝑖𝑗(𝑘) = 𝑓𝑖𝑗𝑥𝑗(𝑘)  for  𝑖 ≠ 𝑗, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛,

                                                                                   (3.1) 

where 𝑓𝑖𝑗 is a coefficient depending on 𝑥𝑗(𝑘) and the discrete-time 

instant 𝑘. 
The system is linear if 𝑓𝑖𝑗 is independent of 𝑥𝑗(𝑘) and it is ad-

ditionally time-invariant if 𝑓𝑖𝑗 is independent of 𝑘. 

From the balance of material of the 𝑖 -th compartment we have 
the following fractional difference equation 

Δ
𝛼𝑥𝑖(𝑘 + 1) = ∑ 𝑓𝑖𝑗𝑥𝑗(𝑘) + 𝑓𝑖𝑖𝑥𝑖(𝑘) + 𝑢𝑖(𝑘)𝑛

𝑖=1
𝑖≠𝑗

 for 𝑖 =

1, . . . , 𝑛,                                                                    (3.2) 

where Δ
𝛼𝑥𝑖 is defined by (2.5b) and 𝑥𝑖(𝑘) denotes the amount of 

material in the 𝑖 -th compartment at time step 𝑘, i.e., 

𝑓𝑖𝑖𝑥𝑖(𝑘) = 𝑥𝑖(𝑘) − 𝑓0𝑖𝑥𝑖(𝑘) − ∑ 𝑓𝑖𝑗𝑥𝑖(𝑘)𝑛
𝑖=1
𝑖≠𝑗

= (1 − 𝑓0𝑖 −

∑ 𝑓𝑖𝑗
𝑛
𝑖=1
𝑖≠𝑗

)𝑥𝑖(𝑘).          (3.3) 

From equation (3.3) we have 
𝑓𝑖𝑖 = 1 − 𝑓0𝑖 − ∑ 𝑓𝑖𝑗

𝑛
𝑖=1
𝑖≠𝑗

 for 𝑖 = 1, . . . , 𝑛.       (3.4) 

Note that if 𝑢𝑗(𝑘) = 0, then the output flow of material from 

the 𝑗 -th compartment at the time instant 𝑘 + 1 cannot exceed the 
total amount of material present in the compartment at time instant 
𝑘, i.e., 

∑ 𝑓𝑖𝑗
𝑛
𝑖=1 ≤ 1 for 𝑗 = 1, . . . , 𝑛 and 𝑓𝑖𝑗 ≥ 0.       (3.5) 

Definition 3.1. The matrix 𝐹 ∈ ℜ+
𝑛×𝑛 satisfying the condition 

(3.5) is called the compartmental matrix of the fractional discrete-
time linear system. 

Using (3.3) for 𝑖 = 1, . . . , 𝑛 we obtain the state equation of the 
compartmental system in the form 

𝑥(𝑘 + 1) = 𝐹𝑥(𝑘) + 𝐵𝑢(𝑘), 𝑖 = 1, . . . , 𝑛     (3.6a) 

where  
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𝑥(𝑘) = [
𝑥1(𝑘)

⋮
𝑥𝑛(𝑘)

], 𝑢(𝑘) = [
𝑢1(𝑘)

⋮
𝑢𝑛(𝑘)

], 𝐹 = [
𝑓11 . . . 𝑓1𝑛

⋮ . . . ⋮
𝑓𝑛1 . . . 𝑓𝑛𝑛

].

                                                                                 (3.6b) 
The output equation of the compartmental system has the form 

𝑦(𝑘) = 𝐶𝑥(𝑘),        (3.6c) 

where 𝐶 ∈ ℜ+
𝑝×𝑛

. 
From (3.6) it follows that the fractional compartmental systems 

are positive linear systems. 

4. CONTROLLABILITY AND OBSERVABILITY  
OF STANDARD AND COMPARMENTAL  
LINEAR SYSTEMS 

Let us consider a linear discrete-time system described by the 
following equations: 

𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 , 𝑖 ∈ 𝑍+ = {0,  1,  . . . },    (4.1a) 

𝑦𝑖 = 𝐶𝑥𝑖 ,    (4.1b) 

with the initial condition 𝑥0, where 𝑥𝑖 ∈ ℜ𝑛, 𝑢𝑖 ∈ ℜ𝑚 and 𝑦𝑖 ∈
ℜ𝑝 are the state, input and output vectors and 𝐴 ∈ ℜ𝑛×𝑛, 𝐵 ∈
ℜ𝑛×𝑚 and 𝐶 ∈ ℜ𝑝×𝑛 are system matrices. 

Definition 4.1. The linear system (4.1) (or the pair (𝐴,  𝐵)) is 
called controllable in the interval time [0, 𝑖𝑓] = 0,1, . . . , 𝑖𝑓 if the 

exists an input 𝑢𝑖 for 𝑖 ∈ [0, 𝑖𝑓] which steers the state of the sys-

tem from initial state 𝑥0 ∈ ℜ𝑛 to the given final state 𝑥𝑓, i.e., 𝑥𝑖𝑓
=

𝑥𝑓. 

Theorem 4.1. The linear system (4.1) is controllable if and only 
if one of the following conditions is satisfied: 
1. rank[𝐵 𝐴𝐵 . . . 𝐴𝑛−1𝐵] = 𝑛        (4.2) 
2. rank[𝐼𝑛𝑧 − 𝐴 𝐵] = 𝑛 for all 𝑧 ∈ C,  
 (4.3) 
where C is the field of complex numbers. 

Definition 4.2. The linear system (4.1), or equivalently the pair 
(𝐴,  𝐶), is called observable if it is possible to uniquely determine 

the initial state 𝑥0 based on the input 𝑢𝑖 and output 𝑦𝑖 for 𝑖 =
0,1, . . . , 𝑖𝑓.  

Theorem 4.2. The linear system (4.1) is observable if and only 
if at least one of the following conditions is satisfied: 

1. rank [

𝐶
CA

⋮
𝐶𝐴𝑛−1

] = 𝑛,         (4.4) 

2. rank [
𝐼𝑛𝑧 − 𝐴

𝐶
] = 𝑛, for all 𝑧 ∈ C,        (4.5) 

Now let us consider the fractional compartmental linear system 
(3.6) 

Definition 4.3. The fractional compartmental linear system (3.6), 
or equivalently the pair (𝐹,  𝐵), is called reachable on the time in-
terval [0, 𝑖𝑓] if there exists an input sequence 𝑢𝑖 for 𝑖 ∈ [0, 𝑖𝑓] 

which steers the system state from the zero initial condition to a 
given final state 𝑥𝑓, i.e., 𝑥𝑖𝑓

= 𝑥𝑓. 

A matrix 𝐹 ∈ ℜ𝑛×𝑛 is called monomial if each of its rows and 
each of its columns contains exactly one positive entry, and all other 
entries are zero. 

Theorem 4.4. The fractional compartmental linear system (3.6) 

is reachable if the matrix 

𝑅𝑓 = ∑ 𝐹𝑖(𝐹𝑇)𝑖𝑛−1
𝑖=0          (4.6) 

is monomial. The input which steers the system state to 𝑥𝑖𝑓
= 𝑥𝑓 

is given by 

𝑢𝑖 = (𝐹𝑇)𝑖𝑓−𝑖−1𝑅𝑓
−1𝑥𝑓         (4.7) 

Proof. When matrix (4.6) is monomial, its inverse 𝑅𝑓
−1 ∈ ℜ+

𝑛×𝑛 

is nonnegative matrix. Consequently, the input (4.7) is also 
nonnegative. Given that 𝑥0 = 0, applying (4.7) yields 

𝑥𝑓 =

∑ 𝐹𝑖𝑓−𝑖−1𝐵𝑢𝑖 =
𝑖𝑓−1

𝑖=0
∑ 𝐹𝑖𝑓−𝑖−1(𝐹𝑇)𝑖𝑓−𝑖−1𝑅𝑓

−1𝑥𝑓 =
𝑖𝑓−1

𝑖=0
𝑥𝑓   

           (4.8) 
since 𝐵 = 𝐼𝑛. 

Therefore, the input (4.7) steers the state of the system from 𝑥0 

to 𝑥𝑖𝑓
= 𝑥𝑓.  □ 

Theorem 4.5. The fractional compartmental positive linear sys-
tem (3.6) is reachable in time [0, 𝑖𝑓] if and only if the matrix 𝐹 ∈

𝑀𝑛 is monomial.  

Proof. Sufficiency. If 𝐹 ∈ 𝑀𝑛 is monomial then 𝐹𝑖 ∈ ℜ+
𝑛×𝑛 is 

also monomial. In this case the matrix 

𝑅𝑓 = ∑ 𝐹𝑖𝑓−𝑖−1(𝐹𝑇)𝑖𝑓−𝑖−1 =
𝑖𝑓−1

𝑖=0
∑ 𝐹𝑖(𝐹𝑇)𝑖𝑖𝑓−1

𝑖=0
      (4.9) 

is monomial. 
Necessity. From Cayley-Hamilton theorem [6] we have 

𝐹𝑖 = ∑ 𝑎𝑖𝑗𝐹
𝑗 ,𝑚−1

𝑗=0  𝑖 = 𝑚,𝑚 + 1, . ..      (4.10) 

where 𝑎𝑖𝑗are some nonzero real coefficients. 

Using (4.10) we obtain 

𝑥𝑓 = [𝐵 𝐹𝐵 . . . 𝐹𝑛−1𝐵]

[
 
 
 

𝑣0𝑓

𝑣1𝑓

⋮
𝑣𝑛−1,𝑓]

 
 
 

   (4.11a)  

where 

𝑣𝑖𝑓
= ∑ 𝑎𝑖𝑗𝑢𝑖 .

𝑖𝑓
𝑖=0

      (4.11b) 

Therefore, for given 𝑥𝑓 ∈ ℜ+
𝑛  it is possible to find the nonnega-

tive 𝑣𝑖𝑓
 for 𝑖 = 0,1, . . . , 𝑛 − 1 if and only if 

rank[𝐵 𝐹𝐵 . . . 𝐹𝑛−1𝐵] = 𝑛.      (4.12) 

Observe that for the nonnegative system defined in (4.11b), a 
nonnegative input 𝑢𝑖 ∈ ℜ+

𝑚 can be determined. Hence, the proof 
is complete.  □ 

Observability of fractional positive compartmental linear sys-
tems is defined analogously to that in standard positive linear sys-
tems. Since it is determined exclusively by the matrices 𝐴 and 𝐶, 
and not by 𝐵. Consequently, system (2.1) is replaced by the frac-
tional positive compartmental linear system of the following form 

Δ
𝛼𝑥𝑖+1 = 𝐹𝑥𝑖 , , 𝑖 ∈ 𝑍+ = 0,1,2, . .., 0 < 𝛼 < 1,  (4.13a) 

𝑦 = 𝐶𝑥𝑖 ,      (4.13b) 

where 𝑥𝑖 ∈ ℜ𝑛, 𝑦𝑖 ∈ ℜ𝑝 and 𝐶 ∈ ℜ+
𝑝×𝑛

. 
The solution to the equation (4.13a) with (2.6b) has the form 

𝑥𝑖 = Φ𝑖𝑥0 + ∑ Φ𝑖−𝑗−1𝐵𝑢𝑗
𝑖−1
𝑗=0 ,    (4.14a) 

where 
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Φ𝑖+1 = (𝐹 + 𝐼𝑛𝛼)Φ𝑖 + ∑ (−1)𝑗+1 (
𝛼
𝑖
) Φ𝑖−𝑗+1

𝑖+1
𝑗=2 ,  (4.14b) 

with Φ0 = 𝐼𝑛. 
Definition 4.4. The fractional positive compartmental linear sys-

tem (4.13) is called observable on the interval [0, 𝑖𝑓] if knowledge 

of the output 𝑦𝑖 over the interval [0, 𝑖𝑓] enables unique determi-

nation of the initial state 𝑥0. 
Theorem 4.6. The fractional positive compartmental linear sys-

tem (4.13) is observable on the interval [0, 𝑖𝑓] if and only if the 

matrix 

Φ
𝑇
𝐶𝑇𝐶Φ ∈ ℜ+

𝑛×𝑛        (4.15) 

is monomial. 
Proof. Substituting (4.14a) into (4.13b) we obtain 

𝑦 = 𝐶Φ𝑥0.        (4.16) 

Note that [Φ
𝑇
𝐶𝑇𝐶Φ]−1 ∈ ℜ+

𝑛×𝑛 if and only if the matrix (4.15) 
is monomial. Consequently, equation (4.16) yields 

𝑥0 = [Φ
𝑇
𝐶𝑇𝐶Φ]−1Φ

𝑇
𝐶𝑇𝑦 ∈ ℜ+

𝑛       (4.17) 

since Φ
𝑇
𝐶𝑇𝑦 ∈ ℜ+

𝑛×𝑛 for 𝑦𝑖. 

5. EIGENVALUE ASSIGNMENT IN THE STANDARD  
AND FRACTIONAL COMPARMENTAL LINEAR SYSTEMS 

Let us consider the fractional compartmental system (3.3) un-
der state feedback control 

𝑢 = 𝐾𝑥,           (5.1)  

where 𝐾 ∈ ℜ𝑛×𝑛. 
Assuming 𝐵 = 𝐼𝑛, it follows from equation (5.1) that 

Δ
𝛼𝑥𝑖+1 = 𝐹𝑐𝑥𝑖 ,          (5.2) 

where 

𝐹𝑐 = 𝐹 − 𝐾.          (5.3) 

Based on the given matrix 𝐴 and the desired close-loop matrix 
𝐴𝑐 from (5.3), the following expression can be derived 

𝐾 = 𝐹 − 𝐹𝑐 .          (5.4) 

Accordingly, the following theorem is established. 
Theorem 5.1. Given the fractional compartmental system (3.3), 

there always exists a state feedback (5.1) such that the closed-loop 
system matrix 𝐹𝑐 achieves a specified set of eigenvalues. 

Example 5.1. The matrix 𝐹 of the fractional compartmental lin-
ear system is given by 

𝐹 = [
0 1 0
0 0 1

−4 0 3
]         (5.5) 

and its eigenvalues are: 𝑧1 = 𝑧2 = 2, 𝑧3 = −1, since 

𝑑𝑒𝑡[ 𝐼3𝑧 − 𝐹] = |
𝑧 −1 0
0 𝑧 −1
4 0 𝑧 − 3

| = 𝑧3 − 3𝑧2 + 4.      (5.6) 

Determine the feedback matrix 𝐾 ∈ ℜ3×3 such that the 
closed-loop system matrix 𝐹𝑐 has eigenvalues: 𝑧̄1 = −0.1, 𝑧̄2 =
−0.2, 𝑧̄3 = −0.5. 

It should be noted that the desired closed-loop matrix 𝐹𝑐 is not 
unique. Two alternative forms of 𝐹𝑐 are considered below. 

Case 1. The matrix 𝐹𝑐 is assumed to be in the Frobenius ca-
nonical form, as in equation (5.5) 

𝐹𝑐 = [
0 1 0
0 0 1

−0.01 −0.17 −0.8
].        (5.7) 

In this case using (5.4), (5.5) and (5.6) we obtain 

𝐾 = 𝐹 − 𝐹𝑐 = [
0 0 0
0 0 0

−4.01 −0.17 3.8
].       (5.8) 

Case 2. The matrix 𝐹𝑐 𝐹𝑐 is assumed to be diagonal 

𝐹𝑐 = [
−0.1 0 0

0 −0.2 0
0 0 −0.5

].        (5.9) 

In this case we have 

𝐾 = 𝐹 − 𝐹𝑐 = [
−0.1 1 0

0 −0.2 1
−4 0 3.5

].     (5.10) 

Note that the presented approach can be generalized to include 
output feedback strategies. 

6. CONCLUDING REMARKS 

Fractional, compartmental, time-invariant linear systems are 
analyzed, with a focus on their fundamental properties. Theoretical 
foundations, including key definitions and theorems related to 
standard and positive fractional linear systems, are outlined. A 
class of fractional compartmental discrete-time systems is intro-
duced and studied. The concepts of controllability and observability 
are discussed for both standard and compartmental systems, fol-
lowed by an examination of the eigenvalue assignment problem in 
the compartmental case. The results obtained may also be ex-
tended to descriptor discrete-time fractional linear systems. 
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