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Abstract: The seventh-order boundary value problems (BVPs), which are important because of their complexity and prevalence in many 
scientific and engineering fields, are the subject of this paper’s study. These high-order boundary value problems appear in fields such  
as fluid dynamics, where they are used to model fluid flow, and in elasticity theory, where they help describe the deformation of materials. 
Unfortunately, the precision and stability required to solve these high-order problems consistently are frequently lacking from current  
numerical techniques. Consequently, the advancement of theoretical research as well as practical applications in these disciplines depends 
on the development of a reliable and accurate method for solving seventh-order boundary value problems. In order to improve the accuracy 
and stability of solutions for these challenging issues, we propose novel numerical strategies that involves non-polynomial and polynomial 
cubic splines. For both methods, the domain [0,1] is divided into sub-intervals with step sizes of h=1/10 and h=1/5. This method involves 
initially transforming the seventh-order boundary value problems into a system of second-order. These second-order boundary value  
problems are then discretized using finite difference approximations, incorporating essential boundary conditions, and ultimately converted 
into a set of linear algebraic equations. The employed methods are rigorously assessed through experimentation on three distinct test  
problems. The outcomes attained showcase an exceptional level of accuracy, extending up to 7 decimal places. These commendable results 
are vividly depicted in both the tabulated data and accompanying graphs. Such a high degree of precision substantiates the dependability 
and efficiency of the proposed method. Comparisons, presented in tables and graphs, highlight the precision and reliability of our methods. 
These comparisons confirm that our approaches are valuable tools for addressing the challenges associated with seventh-order boundary 
value problems, marking a notable contribution to the field of numerical analysis. While lower-order boundary value problems have been 
extensively studied, applying these splines methods to seventh-order boundary value problems presents new challenges and insights.  
The novelty of this work involves non-polynomial and polynomial cubic spline techniques to solve seventh-order boundary value problems, 
offering improved accuracy and stability over existing numerical methods. 

Key words: finite difference method, central difference, boundary value problems, non polynomial, spline methods, polynomial, numerical 
analysis

1. INTRODUCTION 

Seventh-order boundary value problems are not as common as 
lower-order problems but can arise in specific physical and engi-
neering contexts, particularly in areas where complex phenomena 
need to be described with high precision. For example, the deflec-
tion 𝑦(𝑥) of a beam might be described by a seventh-order differ-
ential equation to capture detailed physical effects:  

𝐸𝐼
𝑑7𝑦

𝑑𝑥7
= 𝑓(𝑥), (1) 

where 𝐸 is the modulus of elasticity, 𝐼 is the moment of inertia, and 
𝑓(𝑥) is the distributed load. 

In fluid mechanics, seventh-order BVPs describe complex flow 
patterns and instabilities in boundary layers, such as those found in 
advanced aerodynamics or wave propagation phenomena:  

𝑑7𝑢

𝑑𝑥7
+ 𝑎

𝑑5𝑢

𝑑𝑥5
+ 𝑏

𝑑3𝑢

𝑑𝑥3
+ 𝑐𝑢 = 0, (2) 

where 𝑢 represents the flow variable, and 𝑎, 𝑏, and 𝑐 are coeffi-
cients representing various physical parameters. In nonlinear dy-
namics, these equations capture detailed interactions in systems 
exhibiting chaotic behavior. In quantum mechanics, higher-order dif-
ferential equations appear in advanced quantum field theories and 
perturbation analysis, where they describe the behavior of quantum 
fields under complex interactions. 

In computer graphics, dealing with curves is essential for draw-
ing various objects on the screen. Cubic curves, both non-polyno-
mial and polynomial splines, are commonly used due to their flexi-
bility. The novelty of this study lies in the approach of utilizing both 
CPS and CNPS methods, to tackle nonlinear seventh-order BVPs. 
While previous research has explored various numerical methods 
for lower-order BVPs, the application of these spline techniques to 
seventh-order nonlinear problems is relatively unexplored. 

Cubic polynomial splines are widely used due to their smooth-
ness and computational efficiency. They ensure continuity of the 
first and second derivatives, which is crucial for accurately solving 
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high-order differential equations. The general form of a cubic spline 
𝑆(𝑥) between two points 𝑥𝑖 and 𝑥𝑖+1 is: 

𝑆𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)
2 + 𝑑𝑖(𝑥 − 𝑥𝑖)

3, (3) 

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, and 𝑑𝑖 are coefficients determined by the spline 
conditions, including continuity of the first and second derivatives at 
the knots. 

Nonpolynomial splines, such as trigonometric or exponential 
splines, offer flexibility in modeling functions with periodic or rapidly 
varying behavior, which is often encountered in physical problems. 
For example, a trigonometric spline 𝑇(𝑥) might be expressed as: 

𝑇𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖sin(𝜔(𝑥 − 𝑥𝑖)) + 𝑐𝑖cos(𝜔(𝑥 − 𝑥𝑖)), (4) 

where 𝜔 is the frequency parameter, and 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are co-
efficients. These splines are particularly useful in handling boundary 
conditions that exhibit periodicity or oscillatory characteristics. 

Despite the advantages of CPS and CNPS methods, there are 
several limitations to our approach. These methods can become 
computationally intensive, especially for smaller step sizes, which 
yield more accurate results but at the cost of increased computa-
tional demand. Conversely, larger step sizes may reduce computa-
tional effort but compromise accuracy, especially for problems with 
steep gradients or rapid changes. Implementing cubic polynomial 
splines can be more complex than using simpler methods like finite 
differences, requiring careful construction and continuity at the 
knots. While cubic splines generally provide good convergence 
properties, certain nonlinear or stiff problems may require very fine 
discretization to achieve desired accuracy, increasing computa-
tional costs. 

In [1], the authors conducted extensive research on the solution 
of parabolic Partial Differential Equations (PDEs). They introduced 
a novel method for calculating numerical solutions of fourth-order 
PDEs, building upon the foundation of the polynomial cubic spline 
method and the Alternating Direction Method (ADM). The ADM ap-
proach dismantled the constraints of alternate variables to achieve 
successive approximations. A solution to a seventh-order BVP us-
ing cubic B-spline functions was presented in [2]. The authors pro-
pose an efficient numerical algorithm based on cubic B-splines to 
approximate the solution to the BVP. 

In [3], the focus was on trajectory planning for a robotic arm en-
dowed with seven degrees of freedom. The primary goal was to fa-
cilitate efficient and seamless targeting of a specified point by the 
robotic arm. To address this challenge, cubic polynomials and sev-
enth-degree polynomials were harnessed for joint space trajectory 
planning, all grounded in a foundation of kinematics analysis. The 
trajectory planning was subsequently simulated utilizing the 
MATLAB platform, enabling a comprehensive evaluation of its ef-
fectiveness and performance. 

Mathematicians and engineers historically encountered chal-
lenges when attempting to solve higher-order differential equations. 
To address such complexities and find numerical approximations, a 
range of numerical techniques were employed. In [4], authors pre-
sented a distinctive numerical approach aimed at approximating 
tenth-order Boundary Value Problems (BVPs). The methods de-
vised within this study were based on the innovative concept of 
amalgamating the decomposition process with the Non-Polynomial 
Cubic Spline Method (NPCSM) and the Polynomial Cubic Spline 
Method (PCSM). 

In a research investigation employing the Kernel Hilbert tech-
nique, as outlined in [5], the study showcased the method’s profi-
ciency in solving seventh-order Boundary Value Problems (BVPs) 

while adhering to boundary constraints. These findings were then 
contrasted with those obtained using various approaches, such as 
HPM, VPM, VIM, ADM, and HAM. In addition, the authors of [6] sug-
gested using the Cubic B spline approach to deal with the numerical 
solutions of seventh-order BVPs. For a quantitative knowledge of 
seventh-order BVPs, including both linear and non-linear forms, this 
work especially used CB splines. 

A innovative numerical method was developed in [7] by creating 
ninth-degree spline functions by using extended cubic splines. This 
method provided a special answer to challenging mathematical is-
sues. The authors proposed a numerical method for solving linear 
seventh-order ordinary boundary value problems (BVPs) by utilizing 
the B-Spline system (BSM) in a separate work, which is described 
in [8]. The particular traits of seventh-order BVPs served as a foun-
dation for the creation of this approach. In order to approximate the 
Septic B-Spline formulation, they invented the Collocation BSM, 
which they used to effectively achieve their goal. 

The Homotopy Perturbation Method (HPM) was used by the au-
thor in [9] to offer a method for approximating seventh-order linear 
and nonlinear boundary value problems (BVPs). This approach es-
tablished itself as a useful tool in this field by demonstrating its ca-
pacity to solve higher-order linear and nonlinear BVPs with little ab-
solute error. The authors of [10] concentrated on employing quartic 
B-spline functions to solve seventh-order BVPs. The authors pro-
vided an efficient method for dealing with this kind of issues by pro-
posing a numerical strategy that made use of quartic B-splines to 
approximate the answers. 

In their research [11], the authors employed Non-Polynomial 
Cubic Splines of Sixth Order in conjunction with Finite Difference 
Approximations to solve a complex array of linear algebraic equa-
tions inherent in Boundary Value Problems (BVPs). The research-
ers in [12, 13, 16, 18] investigated the application of three mathe-
matical methods, namely the homotopy perturbation method (HPM), 
cubic spline, spline collocation method, differential transform tech-
nique (DTT) and the modified Adomian decomposition method 
(MADM), for solving higher-order boundary value problems (BVPs). 
In [14], the author introduced an efficient numerical algorithm for 
solving seventh-order BVPs. The approach utilized cubic B-spline 
functions to approximate the solution, offering a reliable method for 
tackling such higher-order problems. Authors in [15] introduced 
quintic nonpolynomial spline algorithms specifically tailored for ad-
dressing fourth-order two-point BVPs. Importantly, this methodology 
extended its applicability to encompass Partial Differential Equa-
tions (PDEs) up to the fourth order, leading to enhanced approxima-
tions while demanding reduced computational effort. 

In the study of induction motors [17], the behavior could be ac-
curately described by a fifth-order differential equation (DE) model. 
By incorporating a torque correction factor, the full seventh-order 
DE structure faithfully replicated the transient torques as well as the 
instantaneous real and reactive power flows. Seventh-order Bound-
ary Value Problems (BVPs) were solved using He’s polynomials and 
the Variational Iteration Method (VIM). The solutions to these prob-
lems were approximated using a rapidly converging series. 

The transformation of seventh-order Boundary Value Problems 
(BVPs) into a set of Integral Equations (IE) was demonstrated in [19, 
20], and these equations were solvable using the Variational Ele-
ment Method (VEM). It’s worth noting that, at that time, there was 
no literature available on the numerical solutions to seventh-order 
BVPs and related Eigenvalue Problems (EVP). The approximate 
solutions of these equations were expressed in terms of overlapping 
series with calculable elements. By combining the Homotopy Per-
turbation Method (HPM) and the Adomian Decomposition Method 
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(ADM), [21] was able to solve seventh-order BVPs. The writers were 
able to solve the difficulties precisely and quickly by the use of this 
method. A method for solving seventh-order BVPs using cubic trig-
onometric B-spline functions was provided by the authors in [22]. 
Their approach provided an effective strategy to deal with such high-
order BVPs by approximating the solutions using these customized 
B-splines. The author of [23] developed a numerical strategy for 
quickly solving linear fourth-order boundary value problems (BVPs) 
using the Non-Polynomial Spline (NPS) technique.  

1.1.  Basics of Cubic Non-Polynomial Splines 

Let’s break the interval [a, b] into n small intervals by using node 
points: 𝜛𝑒 = 𝑎 + 𝑒ℎ, where e = 0, 1, ..., n, where 𝑎 = 𝜛0 and 

𝑏 = 𝜛𝑛 with the step size ℎ =
𝑏−𝑎

𝑛
 and n is a positive integer. Let 

𝜒(𝜛) be the precise solution and 𝜒𝑒 be an estimate to 𝜒(𝜛𝑒) at-

tained by the CNPS 𝑋𝑒(𝜛) between the points (𝜛𝑒 , 𝜒𝑒) and 
(𝜛𝑒+1, 𝜒𝑒+1). It is necessary for 𝑋𝑒(𝜛) to fulfill the ICs at 𝜛𝑒 and 
𝜛𝑒+1, the BCs, and in the same way, the continuity of the initial 

derivative at the collective points (𝜛𝑒 , 𝑠𝑒). For every part 
(𝜛𝑒 , 𝜛𝑒+1) where e = 0, 1, 2, 3, 4, ..., n-1, the spline 𝑋𝑒(𝜛) makes 
the form: 

𝑋𝑒(𝜛) = 𝑞𝑒 + 𝑙𝑒(𝜛 −𝜛𝑒) + 𝑠𝑒sin𝜎(𝜛 − 𝜛𝑒) + 𝑛𝑒cos𝜎(𝜛 −𝜛𝑒)

                                                                                       (5) 
where 𝑞𝑒, 𝑙𝑒, 𝑠𝑒, and 𝑛𝑒 are constants and 𝜎 is a free quantity. 

A NP function 𝑋𝜛 of class 𝑅2[𝑎, 𝑏] which includes 𝜒𝜛 at the 

node points 𝜛𝑒; e = 0, 1, 2, 3, 4, ..., n is influenced by a parameter 

𝜎 and decreases to a Cubic-Spline 𝑋𝜛 in [𝑎, 𝑏] as 𝜎 approaches 
0. For the derivation of the coefficient of the equation (5) in terms of 
𝜒𝑒, 𝜒𝑒+1, 𝑁𝑒, 𝑁𝑒+1, we first define: 

𝑋𝑒(𝜛𝑒) = 𝜒𝑒 ,    𝑋𝑒(𝜛𝑒+1) = 𝜒𝑒+1 (6) 

The consequent expression for the equation (5) is obtained by 
straightforward algebraic manipulation: 

𝑞𝑒 = 𝜒𝑒 +
𝑁𝑒
𝜎2
,    𝑙𝑒 =

𝜒𝑒+1 − 𝜒𝑒
ℎ

+
𝑁𝑒+1 −𝑁𝑒

𝜁𝜃
 

𝑠𝑒 =
𝑁𝑒cos𝜃 − 𝑁𝑒+1

𝜎2sin𝜃
,    𝑛𝑒 = −

𝑁𝑒
𝜎2

 

where 𝜃 = 𝑁ℎ. By the continuity equation of the first derivative at 
node point (𝜛𝑒 , 𝜒𝑒), i.e., 𝑋′𝑒−1(𝜛𝑒) = 𝑋′𝑒(𝜛𝑒) is the con-
sistency relation for e = 0, 1, ..., n-1: 

𝜁(𝑁𝑒+1 +𝑁𝑒−1) + 2𝛿(𝑁𝑒) =
1

ℎ2
(𝜒𝑒−1 + 𝜒𝑒+1 − 2𝜒𝑒) (7) 

where we’ve inserted: 

𝜁 =
1

𝜃sin𝜃
−

1

𝜃2
,    𝛿 =

−1

𝜃2
−
−cos𝜃

𝜃
,    𝜒′′ = 𝑁 (8) 

and 𝜃 = 𝑁ℎ 

The described approach is 4th order convergent if 1-2𝜁-2𝛿=0 

and 𝜁=
1

12
 [23]. 

1.2.  Basics of Cubic Polynomial Splines 

Let’s break the interval [a, b] into n small intervals by using no-
depoints: 𝜛𝑒 = 𝑎 + 𝑒ℎ, 𝑒 = 0,1,2,3,4, . . . , 𝑛 where 𝑎 = 𝜛0, 

𝑏 = 𝜛𝑛 with the step size ℎ =
𝑏−𝑎

𝑛
 and n a positive integer. 

Let 𝜒(𝜛) be the precise solution and 𝜒𝑒 be an estimate to 
𝜒(𝜛𝑒) attained by the NPS 𝑋𝑒(𝜛) between the points (𝜛𝑒 , 𝜒𝑒) 
and (𝜛𝑒+1, 𝜒𝑒+1). It is necessary for 𝑋𝑒(𝜛) to fulfill the interpo-
lating conditions at 𝜛𝑒 and 𝜛𝑒+1, the BCs, and in the same way, 
the continuity of the initial derivative at the collective points 
(𝜛𝑒 , 𝜒𝑒). For every part (𝜛𝑒 , 𝜛𝑒+1) where e = 0, 1, 2, 3, 4, ..., n-
1 the spline 𝑋𝑒(𝜛) makes the form where 𝑞𝑒, 𝑙𝑒, 𝑠𝑒, and 𝑛𝑒 are 
constants and 𝜎 is a free quantity. 

A NP function 𝑋𝜛 of class 𝑅2[𝑎, 𝑏] which includes 𝜒𝜛 at the 
node points 𝜛𝑒; e = 0, 1, 2, 3, 4, ..., n be influenced by a parameter 

𝜎 and decreases to a Cubic-Spline 𝑋𝜛 in [a, b] as 𝜎 approaches 0. 
We first define: 

𝑋𝑒(𝜛𝑒) = 𝜒𝑒 ,    𝑋𝑒(𝜛𝑒+1) = 𝜒𝑒+1,    𝑋′′𝑒(𝜒𝑒) =

𝑁𝑒 ,    𝑋′′𝑒(𝜒𝑒+1) = 𝑁𝑒+1 (9) 

By using a straightforward algebraic operation, we may get the 
corresponding expression: 

𝑞𝑒 = 𝜒𝑒 +
𝑁𝑒
𝜎2
,    𝑙𝑒 =

𝜒𝑒+1 − 𝜒𝑒
ℎ

+
𝑁𝑒+1 −𝑁𝑒

𝜁𝜃
 

𝑠𝑒 =
𝑁𝑒cos𝜃 − 𝑁𝑒+1

𝜎2sin𝜃
,    𝑛𝑒 = −

𝑁𝑒
𝜎2

 

where 

𝜃 = 𝑁ℎ 

By the continuity equation of the first derivative at node point 
(𝜛𝑒 , 𝜒𝑒), i.e., 𝑋′𝑒−1(𝜛𝑒) = 𝑋′𝑒(𝜛𝑒) is the consistency relation 
for e = 0, 1, 2, 3, 4, ..., n-1: 

(𝑁𝑒+1 +𝑁𝑒−1 + 4𝑁𝑒) =
6

ℎ2
(𝜒𝑒−1 + 𝜒𝑒+1 − 2𝜒𝑒) (10) 

where we have substituted: 

𝜒′′ = 𝑁 

The paper progresses logically from theory to application. Sec-
tion 2 discusses the development of CPS and CNPS, while Section 
3 evaluates their effectiveness in resolving 7th order BVPs. Section 
4 concludes with a concise analysis and recommendations, provid-
ing a clear and educational reading experience. 

2.  SEVENTH ORDER NON-LINEAR BVPS 

Using the CPS and CNPS approaches to approximatively solve 

a nonlinear seventh-order boundary value problem (7𝑡ℎ order BVP) 
is the main goal in this situation. These methods are computational 
tools designed to generate approximative numerical solutions to this 
difficult problem. By employing these techniques, we aim to effec-
tively manage the challenges posed by the nonlinear nature of the 
problem and give exact numerical estimates for the desired outputs.  

𝜒(7)(𝜛) = 𝑧(𝜛, 𝜒(𝜛), 𝜒(1)(𝜛), 𝜒(2)(𝜛), 𝜒(3)(𝜛), 

𝜒(4)(𝜛), 𝜒(5)(𝜛), 𝜒(6)(𝜛));     𝜛𝜖[𝑎, 𝑏] (11) 

along with BCs:  

𝜒(2𝑖)(𝑎) = 𝜁𝑖 ,    𝜒
(2𝑖)(𝑏) = 𝛿𝑖 (12) 

where 𝜁𝑖,𝛿𝑖; i=0,1,2,3 are constants and 𝜁𝑖(o),i=1,...,7 and 𝑧(𝜛) 
are continuous functions on [r,s]. To estimate CNPS and CPS 
choose 𝑆 to BVPs with BCs, Let us distribute interval [𝑟, 𝑠] into n 
sub-interval 𝑧𝑖=r+ih, i=0,1,...,n-1,n. 𝑟 = 𝑧0, 

𝑠 = 𝑧𝑛, h =  
𝑠  −  𝑟

𝑛
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Now for CNPS 𝑆𝑖−1
′ (𝑧𝑖) = 𝑆𝑖

′(𝑧𝑖) is relation              

𝑖 = 0,1, . . . ,   𝑛 − 1,  

𝜁  𝑁𝑖+1 + 2  𝛿  𝑁𝑖 +   𝜁  𝑁𝑖−1 =  
1

ℎ2
  (𝑣𝑖+1 − 2  𝑣𝑖 + 𝑣𝑖−1) (13) 

here the substitution 

𝜁 =
1

𝜃  𝑠𝑖𝑛𝜃
−

1

𝜃2
,    𝛿 = −

1

𝜃2
−
𝑐𝑜𝑠𝜃

𝜃
, 𝑎𝑛𝑑    𝜃 = ℧  ℎ 

Now for CPS 𝑆𝑖−1
′ (𝑧𝑖) = 𝑆𝑖

′(𝑧𝑖) is relation 

𝑖 = 0,1, . . ., 𝑛 − 1,  

𝑁𝑖+1 + 4𝑁𝑖 + 𝑁𝑖−1 =
6

ℎ2
(𝑣𝑖+1 − 2𝑣𝑖 + 𝑣𝑖−1)       (14) 

where we have replace  

𝑣′′ = 𝑁 

Now differentiating (11) w.r.t. 𝜒 so, the equation become  
𝜒(8)(𝜛) = 𝑧(𝜛, 𝜒(𝜛), 𝜒(1)(𝜛), 𝜒(2)(𝜛), 𝜒(3)(𝜛), 𝜒(4)(𝜛), 𝜒(5)(𝜛), 

𝜒(6)(𝜛), 𝜒(7)(𝜛))                                                                      (15) 

Equation (15) presents an eighth-order boundary value prob-
lem. In order to manage its complexity, we proceeded to transform 
equation (15) into a system of second-order Boundary Value Prob-
lems (BVPs), incorporating the Boundary Conditions (BCs) from 
equation (12). This transformation was accomplished by substitut-
ing the equation into a specific form, resulting in a more manageable 
representation.  

𝜒′′(𝜛) = 𝑒(𝜛) (16) 

𝑒′′(𝜛) = 𝑓(𝜛) (17) 

𝑓′′(𝜛) = 𝑔(𝜛) (18) 

in equation (15),the reduced system of 2nd order will be  

𝑝(2)(𝑘) = 𝑧(𝜛, 𝜒(𝜛), 𝜒(1)(𝜛), 𝑒(𝜛), 𝑒(1)(𝜛), 𝑓(𝜛), 𝑓(1)(𝜛), 

𝑔(𝜛), 𝑔(1)(𝜛));     𝜛𝜖[𝑎, 𝑏] (19) 

Along with boundary conditions:  

𝜒(𝑎) = 𝜁0,    𝜒(𝑏) = 𝛿0
𝑒(𝑎) = 𝜁1,    𝑒(𝑏) = 𝛿1
𝑓(𝑎) = 𝜁2,    𝑓(𝑏) = 𝛿2
𝑔(𝑎) = 𝜁3,    𝑔(𝑏) = 𝛿3

 (20) 

2.1.   Cubic Non-Polynomial Spline 

We get relations for 𝜒(𝜛),𝑒(𝜛),𝑓(𝜛) and 𝑔(𝜛) by using the 
continuity condition of first order derivative, respectively as:  

𝜁(𝑅𝑖+1 + 𝑅𝑖−1) + 𝛿4𝑅𝑖 =
1

ℎ2
(𝜒𝑖+1 − 2𝜒𝑖 + 𝜒𝑖−1) (21) 

𝜁(𝑆𝑖+1 + 𝑆𝑖−1) + 𝛿4𝑆𝑖 =
1

ℎ2
(𝑒𝑖+1 − 2𝑒𝑖 + 𝑒𝑖−1) (22) 

𝜁(𝑃𝑖+1 + 𝑃𝑖−1) + 𝛿4𝑃𝑖 =
1

ℎ2
(𝑔𝑖+1 − 2𝑔𝑖 + 𝑔𝑖−1) (23) 

we have substitute  

𝜒′′(𝜛) = 𝑅(𝜛),    𝑒′′(𝜛) = 𝑆(𝜛),

𝑓′′(𝜛) = 𝑇(𝜛),    𝑔′′(𝜛) = 𝑃(𝜛)
 (24) 

Discretize equations (15)-(18) at gird points  

(𝜛𝑖 , 𝑔𝑖), (𝜛𝑖 , 𝜒𝑖), (𝜛𝑖 , 𝑒𝑖), (𝜛𝑖𝑓𝑖) 

𝑔(2)(𝜛) = 𝑧(𝜛, 𝜒(𝜛), 𝜒(1)(𝜛), 𝑒(𝜛), 𝑒(1)(𝜛), 𝑓(𝜛), 𝑓(1)(𝜛), 𝑔(𝜛),

𝑔(1)(𝜛))                                                                                     (25) 

 

𝜒′′(𝜛𝑖) = 𝑒(𝜛𝑖) = 𝑒𝑖 ,

𝑒′′(𝜛𝑖) = 𝑓(𝜛𝑖) = 𝑓𝑖 ,

𝑓′′(𝜛𝑖) = 𝑔(𝜛𝑖) = 𝑔𝑖 ,

 (26) 

Now after substitution we get  

𝜒′′𝑖 = 𝑅𝑖 ,    𝑒′′𝑖 = 𝑆𝑖 ,

𝑓′′𝑖 = 𝑇𝑖 ,    𝑔′′𝑖 = 𝑃𝑖
 (27) 

then above equation become  

𝑃𝑖 = 𝑧(𝜛𝑖 , 𝜒(𝜛𝑖), 𝜒
(1)(𝜛𝑖), 𝑒(𝜛𝑖), 𝑒

(1)(𝜛𝑖), 𝑓(𝜛𝑖), 𝑓
(1)(𝜛𝑖),  

𝑔(𝜛𝑖), 𝑔
(1)(𝜛𝑖));  (28) 

 
𝑅𝑖 = 𝑒𝑖 ,
𝑆𝑖 = 𝑓𝑖 ,
𝑇𝑖 = 𝑔𝑖 ,

    } (29) 

From equation (28) and (29)  

𝑃𝑖+1 = 𝑧(𝜛𝑖+1, 𝜒(𝜛𝑖+1), 𝜒
(1)(𝜛𝑖+1), 𝑒(𝜛𝑖+1), 𝑒

(1)(𝜛𝑖+1), 

𝑓(𝜛𝑖+1), 𝑓
(1)(𝜛𝑖+1), 𝑔(𝜛𝑖+1), 𝑔

(1)(𝜛𝑖+1)); (30) 

𝑅𝑖+1 = 𝑒𝑖+1,
𝑆𝑖+1 = 𝑓𝑖+1,
𝑇𝑖+1 = 𝑔𝑖+1,

    } (31) 

then similarly  

𝑃𝑖−1 = 𝑧(𝜛𝑖−1, 𝜒(𝜛𝑖−1), 𝜒
(1)(𝜛𝑖−1), 𝑒(𝜛𝑖−1), 𝑒

(1)(𝜛𝑖−1), 𝑓(𝜛𝑖−1), 

𝑓(1)(𝜛𝑖−1), 𝑔(𝜛𝑖−1), 𝑔
(1)(𝜛𝑖−1)); 

 (32) 

 
𝑅𝑖−1 = 𝑒𝑖−1,
𝑆𝑖−1 = 𝑓𝑖−1,
𝑇𝑖−1 = 𝑔𝑖−1,

    } (33) 

The subsequent 𝑂(ℎ2) approximations for the first-order deriv-
atives l, e, f, and g in Equations (28), (30), and (33) offer a viable 
approach. These approximations can be effectively utilized to en-
hance the accuracy of the calculations.  

𝜒𝑖
′ =

𝜒𝑖+1−𝜒𝑖−1

2ℎ
,    𝜒𝑖+1

′ =
3𝜒𝑖+1−4𝜒𝑖+𝜒𝑖−1

2ℎ
,    𝜒𝑖−1

′ =
−𝜒𝑖+1+4𝜒𝑖−3𝜒𝑖−1

2ℎ
,    

𝑒𝑖
′ =

𝑒𝑖+1−𝑒𝑖−1

2ℎ
,    𝑒𝑖+1

′ =
3𝑒𝑖+1−4𝑒𝑖+𝑒𝑖−1

2ℎ
,    𝑒𝑖−1

′ =
−𝑒𝑖+1+4𝑒𝑖−3𝑒𝑖−1

2ℎ
,    

𝑓𝑖
′ =

𝑓𝑖+1−𝑓𝑖−1

2ℎ
,    𝑓𝑖+1

(1)
=

3𝑓𝑖+1−4𝑓𝑖+𝑓𝑖−1

2ℎ
,    𝑓𝑖−1

′ =
−𝑓𝑖+1+4𝑓𝑖−3𝑓𝑖−1

2ℎ
,    

𝑔𝑖
′ =

𝑔𝑖+1−𝑔𝑖−1

2ℎ
,    𝑔𝑖+1

′ =
3𝑔𝑖+1−4𝑔𝑖+𝑔𝑖−1

2ℎ
,    𝑔𝑖−1

′ =
−𝑔𝑖+1+4𝑔𝑖−3𝑔𝑖−1

2ℎ
,    }
 
 

 
 

    

                                                                                                    (34) 

Using equations (28)-(34) in equations (14) and (21)-(23 

 

𝜁𝑒𝑖−1 + 2𝛿𝑒𝑖 + 𝜁𝑒𝑖+1 =
1

ℎ2
(𝜒𝑖−1 − 2𝜒𝑖 + 𝜒𝑖+1)

𝜁𝑓𝑖−1 + 2𝛿𝑓𝑖 + 𝜁𝑓𝑖+1 =
1

ℎ2
(𝑒𝑖−1 − 2𝑒𝑖 + 𝑒𝑖+1)

𝜁𝑔𝑖−1 + 2𝛿𝑔𝑖 + 𝜁𝑔𝑖+1 =
1

ℎ2
(𝑓𝑖−1 − 2𝑓𝑖 + 𝑓𝑖+1) }

 
 

 
 

  (35) 

we get  
 

𝜁𝑧(𝜛𝑖+1, 𝜒(𝜛𝑖+1), 𝜒
(1)(𝜛𝑖+1), 𝑒(𝜛𝑖+1), 𝑒

(1)(𝜛𝑖+1), 𝑓(𝜛𝑖+1),

𝑓(1)(𝜛𝑖+1), 𝑔(𝜛𝑖+1), 𝑔
(1)(𝜛𝑖+1)) + 2𝛿𝑧(𝜛𝑖 , 𝜒(𝜛𝑖), 𝜒

(1)(𝜛𝑖),

𝑒(1)(𝜛𝑖), 𝑓(𝜛𝑖), 𝑓
(1)(𝜛𝑖), 𝑔(𝜛𝑖), 𝑔

(1)(𝜛𝑖)) + 𝜁𝑧(𝜛𝑖−1, 𝜒(𝜛𝑖−1),

𝜒(1)(𝜛𝑖−1), 𝑒(𝜛𝑖−1), 𝑒
(1)(𝜛𝑖−1), 𝑓(𝜛𝑖−1), 𝑓

(1)(𝜛𝑖−1),

𝑔(𝜛𝑖−1), 𝑔
(1)(𝜛𝑖−1)) =

1

ℎ2
(𝑔𝑖−1 − 2𝑔𝑖 + 𝑔𝑖+1)

          

                         (36)                                  
we obtain  
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𝜁𝑧(𝜛𝑖+1, 𝜒(𝜛𝑖+1),
3𝜒𝑖+1−4𝜒𝑖+𝜒𝑖−1

2ℎ
, 𝑒(𝜛𝑖+1),

3𝑒𝑖+1−4𝑒𝑖+𝑒𝑖−1

2ℎ
, 𝑓(𝜛𝑖+1),

3𝑓𝑖+1−4𝑓𝑖+𝑓𝑖−1

2ℎ
, 𝑔(𝜛𝑖+1),

3𝑔𝑖+1−4𝑔𝑖+𝑔𝑖−1

2ℎ
+ 2𝛿𝑧(𝜛𝑖 , 𝜒(𝜛𝑖),

𝜒𝑖+1−𝜒𝑖−1

2ℎ
,

𝑒(𝜛𝑖),
𝑒𝑖+1−𝑒𝑖−1

2ℎ
, 𝑓(𝜛𝑖),

𝑓𝑖+1−𝑓𝑖−1

2ℎ
, 𝑔(𝜛𝑖),

𝑔𝑖+1−𝑔𝑖−1

2ℎ
+ 𝜁𝑧(𝜛𝑖−1, 𝜒(𝜛𝑖−1),

−𝜒𝑖+1+4𝜒𝑖−3𝜒𝑖−1

2ℎ
,

𝑒(𝜛𝑖−1),
−𝑒𝑖+1+4𝑒𝑖−3𝑒𝑖−1

2ℎ
, 𝑓(𝜛𝑖−1),

−𝑓𝑖+1+4𝑓𝑖−3𝑓𝑖−1

2ℎ
,

𝑔(𝜛𝑖−1),
−𝑔𝑖+1+4𝑔𝑖−3𝑔𝑖−1

2ℎ
=

1

ℎ2
(𝑔𝑖−1 − 2𝑔𝑖 + 𝑔𝑖+1)

  (37) 

Equations (36) and (37), along with the prescribed Boundary 
Conditions (20), come together to establish a coherent system con-
sisting of 4(𝑛 + 1) equations. Similarly, this system is closely 
linked to 4(𝑛 + 1) unknowns, showcasing a harmonious synchro-
nization between the equations and the set of unknown constants.  

2.2.   Cubic Polynomial Spline 

We get relations for 𝜒,e,f by make use of flow the surrounding 
of first order derivative, respectively as  

(𝑅𝑖+1 + 𝑅𝑖−1) + 𝛿4𝑅𝑖 =
6

ℎ2
(𝜒𝑖+1 − 2𝜒𝑖 + 𝜒𝑖−1)

(𝑆𝑖+1 + 𝑆𝑖−1) + 𝛿4𝑆𝑖 =
6

ℎ2
(𝑒𝑖+1 − 2𝑒𝑖 + 𝑒𝑖−1)

(𝑃𝑖+1 + 𝑃𝑖−1) + 𝛿4𝑃𝑖 =
6

ℎ2
(𝑔𝑖+1 − 2𝑔𝑖 + 𝑔𝑖−1)

    

}
 
 

 
 

 (38) 

After substitution we get 

𝜁𝑒𝑖−1 + 2𝛿𝑒𝑖 + 𝜁𝑒𝑖+1 =
6

ℎ2
(𝜒𝑖−1 − 2𝜒𝑖 + 𝜒𝑖+1)

𝜁𝑓𝑖−1 + 2𝛿𝑓𝑖 + 𝜁𝑓𝑖+1 =
6

ℎ2
(𝑒𝑖−1 − 2𝑒𝑖 + 𝑒𝑖+1)

𝜁𝑔𝑖−1 + 2𝛿𝑔𝑖 + 𝜁𝑔𝑖+1 =
6

ℎ2
(𝑓𝑖−1 − 2𝑓𝑖 + 𝑓𝑖+1)

    

}
 
 

 
 

 (39) 

By considering the above data NPCS was settled in section, 
PCS scheme for 𝑖 = 0,1, . . . , 𝑛 − 1  

Equations (40) and (41) form a system of 4(𝑛 + 1) equations 
when integrated with Boundary Conditions (20). This system exhib-
its smooth interaction and corresponds to a set of 4(𝑛 + 1) un-

knowns that are interrelated with the 4(𝑛 + 1) equations. 

𝑧(𝑚𝑖+1, 𝜒(𝜛𝑖+1), 𝜒
(1)(𝜛𝑖+1), 𝑒(𝜛𝑖+1),

𝑒(1)(𝜛𝑖+1), 𝑓(𝜛𝑖+1), 𝑓
(1)(𝜛𝑖+1), 𝑔(𝜛𝑖+1),

𝑔(1)(𝜛𝑖+1)) + 4𝑧(𝜛𝑖 , 𝜒(𝜛𝑖), 𝜒
(1)(𝜛𝑖), 𝑒(𝜛𝑖),

𝑒(1)(𝜛𝑖), 𝑓(𝜛𝑖), 𝑓
(1)(𝜛𝑖), 𝑔(𝜛𝑖), 𝑔

(1)(𝜛𝑖))

+𝑧(𝜛𝑖−1, 𝜒(𝜛𝑖−1), 𝜒
(1)(𝜛𝑖−1), 𝑒(𝜛𝑖−1), 𝑒

(1)(𝜛𝑖−1),

𝑓(𝜛𝑖−1), 𝑓
(1)(𝜛𝑖−1), 𝑔(𝜛𝑖−1),

𝑔(1)(𝜛𝑖−1)) =
6

ℎ2
(𝑔𝑖−1 − 2𝑔𝑖 + 𝑔𝑖+1)

 (40) 

and  

𝑧(𝜛𝑖+1, 𝜒(𝜛𝑖+1),
3𝜒𝑖+1−4𝜒𝑖+𝜒𝑖−1

2ℎ
, 𝑒(𝜛𝑖+1),

3𝑒𝑖+1−4𝑒𝑖+𝑒𝑖−1

2ℎ
, 𝑓(𝜛𝑖+1),

3𝑓𝑖+1−4𝑓𝑖+𝑓𝑖−1

2ℎ
,

𝑔(𝜛𝑖+1),
3𝑔𝑖+1−4𝑔𝑖+𝑔𝑖−1

2ℎ
+ 4𝑧(𝜛𝑖 , 𝜒(𝜛𝑖),

𝜒𝑖+1−𝜒𝑖−1

2ℎ
, 𝑒(𝜛𝑖),

𝑒𝑖+1−𝑒𝑖−1

2ℎ
, 𝑓(𝜛𝑖),

𝑓𝑖+1−𝑓𝑖−1

2ℎ
, 𝑔(𝜛𝑖),

𝑔𝑖+1−𝑔𝑖−1

2ℎ
+ 𝑧(𝜛𝑖−1,

𝜒(𝜛𝑖−1),
−𝜒𝑖+1+4𝜒𝑖−3𝜒𝑖−1

2ℎ
, 𝑒(𝜛𝑖−1),

−𝑒𝑖+1+4𝑒𝑖−3𝑒𝑖−1

2ℎ
, 𝑓(𝜛𝑖−1),

−𝑓𝑖+1+4𝑓𝑖−3𝑓𝑖−1

2ℎ
,

𝑔(𝜛𝑖−1),
−𝑔𝑖+1+4𝑔𝑖−3𝑔𝑖−1

2ℎ
=

6

ℎ2
(𝑔𝑖−1 − 2𝑔𝑖 + 𝑔𝑖+1)

 (41) 

3.  NUMERICAL RESULTS AND DISCUSSIONS 

This section explores the outcomes of using CPS and CNPS 
methods to approximate solutions for a nonlinear seventh-order 

Boundary Value Problem (7𝑡ℎ BVP). By choosing step sizes ℎ =
1/10 and ℎ = 1/5, we examine their impact on accuracy and 
computational efficiency. Smaller step sizes often yield more pre-
cise results but increase computational demands, highlighting the 
trade-off between accuracy and processing power. Comparing re-
sults across different step sizes provides insights into the conver-
gence behavior and efficiency of both methods, demonstrating how 

they adapt to the complexities of the nonlinear 7𝑡ℎ order BVP. This 
analysis sheds light on their convergence characteristics and offers 
practical guidance on balancing accuracy and computational effi-
ciency in solving complex mathematical problems. 

The solution process for the given boundary value problem in-
volves several steps. Problem 3.1/3.2/3.3 was compared with equa-
tion (11) and boundary conditions with (12). Then, continuity condi-
tions are defined to ensure smooth transitions across the intervals 
of the problem domain. Coefficients required for the numerical solu-
tion are then derived based on the given differential equation and 
boundary conditions by discretizing equations (15)-(18) at gird 
points (𝜛𝑖 , 𝑔𝑖), (𝜛𝑖 , 𝜒𝑖), (𝜛𝑖 , 𝑒𝑖), (𝜛𝑖𝑓𝑖). The subsequent 

𝑂(ℎ2) approximations for the first-order derivatives l, e, f, and g in 
Equations (28), (30), and (33) offer a viable approach. These ap-
proximations can be effectively utilized to enhance the accuracy of 
the calculations. Consistency relations prepared following the equa-
tions 34 are verified to ensure the accuracy of the numerical 
method. The resulting system of equations Using equations (28)-
(35) in equations (14) and (21)-(23) is obtained and we get equa-
tions (36-37) then we solved numerically, and higher-order bound-
ary value problems are transformed into a system of second-order 
differential equations. This transformed system is discretized, pre-
paring it for numerical approximation and Equations (36) and (37), 
along with the prescribed Boundary Conditions (20), come together 
to establish a coherent system consisting of 44 equations for ℎ =
0.1 and 24 equations for ℎ = 0.2. 

Similarly, this system is closely linked to 44 unknowns for ℎ =
0.1 and 24 unknowns for ℎ = 0.2, showcasing a harmonious syn-
chronization between the equations and the set of unknown con-
stants. The numerical solution is then obtained using appropriate 
numerical methods. Finally, the process concludes, having suc-
cessfully approximated the solution to the given boundary value 
problem for CNPS. By considering the above data CNPS was set-
tled in section, CPS scheme for 𝑖 = 0,1, . . . , 𝑛 − 1 will be devel-
oped using equations 38-39. Equations (40) and (41) form a system 
of 4(𝑛 + 1) equations when integrated with Boundary Conditions 
(20). This system exhibits smooth interaction and corresponds to a 
set of 44 unknowns for ℎ = 0.1 and 24 unknowns for ℎ = 0.2 

unknowns that are interrelated with the 44 equations for ℎ = 0.1 
and 24 equations for ℎ = 0.2.   

3.1  Problem 3.1 

Consider the nonlinear BVP 

𝜒(7)(𝜛) = −𝑒𝜛(𝑤(𝜛))2    0 ≤ 𝜛 ≤ 1 

subject to 

𝜒(𝑛)(0) = 1,    𝜒(𝑛)(1) = 𝑒−1 

for 𝑛 = 0,2,4,6.  
The precise solution to the problem under consideration is 
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mathematically defined as 𝜒(𝜛) = 𝑒−𝜛. In order to rigorously val-
idate and assess the efficacy of the proposed method, a systematic 
evaluation was conducted. The interval [0,1] was strategically di-
vided into sub-intervals, employing both 10 and 5 equal segments. 
Subsequently, the CPS and CNPS techniques were employed to 
approximate the solution within each of these sub-intervals. 

The outcomes obtained from the CPS and CNPS methods were 
meticulously compared against the analytically derived solution. For 
a finer granularity, the results were organized and presented in a 
clear tabular format. Specifically, Tab.1 was employed to present 

the numerical outcomes when the step size was set at ℎ =
1

10
, and 

Tab. 2 for the case when ℎ =
1

5
.  

  
Fig.1.  Comparison of AEs of CNPS and CPS with [6] of problem 3.1 at 

  ℎ  =   
1

10
 

In addition to the numerical comparisons, visual aids were also 
harnessed to provide a more intuitive understanding of the precision 
achieved by the CPS and CNPS methods. To this end, Fig.1 and 
Fig.2 are crafted to illustrate the absolute errors associated with the 
chosen splines, specifically focusing on the scenario when the step 

size was ℎ =
1

10
. 

3.2  Problem 3.2 

Consider the nonlinear BVP 

𝜒7(𝜛) = 𝜒(𝜛)𝜒′(𝜛) + 𝑒−2𝜛(2 + 𝑒𝜛(𝜛 − 8) − 3𝜛 +𝜛2)0 ≤
𝜛 ≤ 1  

subject to 

𝜒(𝑛)(0) = (−1)
𝑛

2(𝑛 + 1),        𝜒(𝑛)(1) = (−1)
𝑛

2(𝑛 + 1)𝑒 for 𝑛 =
0,2,4,6.  

The precise solution is given as 𝜒(𝜛) = (1 − 𝜛)𝑒−𝜛. To as-
sess the performance of the proposed method, we conducted a sys-
tematic evaluation by segmenting the interval [0,1] into 10 and 5 
equal sub-intervals. Subsequently, we applied the CPS and CNPS 
methods to generate numerical outcomes, which were then juxta-
posed with the specific analytical solution. These comparative anal-

yses are exhaustively presented in Tab.3 for a step size of ℎ =
1

10
 

and in Tab.4 for ℎ =
1

5
. 

In order to offer a more intuitive insight into the precision 
achieved, Fig.3 and Fig.4 are constructed to visually depict the 

absolute errors associated with the employed splines when ℎ =
1

10
. 

These graphical representations enhance clarity by providing a vis-
ual representation of how closely the CPS and CNPS methods cor-
respond to the analytical solution.   

  
Fig.3. Comparison of AEs of CNPS and CPS with [6] of problem 3.2 at 

  ℎ  =   
1

10
 

3.3  Problem 3.3 

Consider the nonlinear BVP 𝜒(7) = 𝑒−𝜛(𝑤(𝜛))2    0 ≤ 𝜛 ≤ 1 
subject to 𝜒(𝑛)(0) = 1,    𝜒(𝑛)(1) = 𝑒1 for 𝑛 = 0,2,4,6.  

In pursuit of accurate approximations, the sought-after solution 
is 𝜒(𝜛) = 𝑒𝜛. To rigorously examine the effectiveness of the pro-
posed method, a meticulous analysis was undertaken. The interval 
[0,1] was thoughtfully divided into 10 and 5 equal sub-intervals, 
setting the stage for a granular evaluation. By applying the CPS and 
CNPS methods, numerical results were obtained and subjected to 
a direct comparison with the precise analytical solution. These in-
sightful evaluations are meticulously presented in Tab.5 for a step 

size of ℎ =
1

10
 and in Tab.6 for ℎ =

1

5
. 

For an enhanced grasp of the achieved precision, Fig.5 and 
Fig.6 are crafted to visually encapsulate the absolute errors tied to 

the utilized splines, specifically when ℎ =
1

10
. These graphical rep-

resentations serve as a powerful tool for gauging the closeness of 
the CPS and CNPS methods to the established analytical solution.   

 
Fig.5.  Comparison of AEs of CNPS and CPS with [6] of problem 3.3 at 

  ℎ  =   
1

10
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Tab.1.  Comparison of accurate, CNPS along with CPS for problem 3.1 at ℎ =
1

5
  

  

𝝕 Accurate solution CNPS solution |𝒆𝒓𝒓𝒐𝒓| on CNPS CPS solution |𝒆𝒓𝒓𝒐𝒓| on CPS 

0 1 1 0.00E-00 1 0.00E-00 

0.2 0.818730753 0.817688874 1.04E-03 0.817618382 1.11E-03 

0.4 0.670320046 0.668633087 1.69E-03 0.668558559 1.76E-03 

0.6 0.548811636 0.547122919 1.69E-03 0.547064978 1.75E-03 

0.8 0.449328964 0.448284237 1.04E-03 0.448246958 1.08E-03 

1 0.367879441 0.367879441 0.00E-00 0.367879441 0.00E-00 

 

Tab. 2.  Comparison of accurate, CNPS along with CPS for problem 3.1 at ℎ =
1

10
  

  

𝝕 Accurate solution CNPS solution |𝒆𝒓𝒓𝒐𝒓| on CNPS CPS solution |𝒆𝒓𝒓𝒐𝒓| on CPS [6] 

0 1 1 0.00E-00 1 0.00E-00 0.00E-00 

0.1 0.904837418 0.904837481 6.27E-08 0.904812814 2.46E-05 3.82E-06 

0.2 0.818730753 0.818730875 1.22E-07 0.818688854 4.19E-05 1.36E-05 

0.3 0.740818221 0.740818391 1.70E-07 0.740765438 5.28E-05 2.49E-05 

0.4 0.670320046 0.670320248 2.02E-07 0.670262025 5.80E-05 3.31E-05 

0.5 0.60653066 0.606530874 2.14E-07 0.606472401 5.83E-05 3.50E-05 

0.6 0.548811636 0.548811841 2.05E-07 0.548757603 5.40E-05 3.01E-05 

0.7 0.496585304 0.496585478 1.74E-07 0.496539521 4.58E-05 2.03E-05 

0.8 0.449328964 0.44932909 1.26E-07 0.449295105 3.39E-05 9.57E-06 

0.9 0.40656966 0.406569726 6.61E-08 0.406551127 1.85E-05 2.11E-06 

1 0.367879441 0.367879441 0.00E-00 0.367879441 0.00E-00 0.00E-00 

   

 Tab. 3.  Comparison of accurate, CNPS along with CPS for problem 3.2 at ℎ =
1

5
  

  
𝝕 Accurate solution CNPS solution |𝒆𝒓𝒓𝒐𝒓| on CNPS CPS solution |𝒆𝒓𝒓𝒐𝒓| on CPS 

0 1 1 0.00E-00 1 0.00E-00 

0.2 0.654984602 0.654548343 4.36E-04 0.653822489 1.16E-03 

0.4 0.402192028 0.401485267 7.07E-04 0.400509549 1.68E-03 

0.6 0.219524654 0.218816219 7.08E-04 0.217928602 1.60E-03 

0.8 0.089865793 0.089426899 4.39E-04 0.088878968 9.87E-04 

1 0 0 0.00E-00 0 0.00E-00 

 

Tab. 4.  Comparison of accurate, CNPS along with CPS for problem 3.2 at ℎ =
1

10
  

  

𝝕 Accurate solution CNPS solution |𝒆𝒓𝒓𝒐𝒓| on CNPS CPS solution |𝒆𝒓𝒓𝒐𝒓| on CPS [6] 

0 1 1 0.00E-00 1 0.00E-00 0.00E-00 

0.1 0.814353676 0.814349741 0.814016517 3.37E-04 3.94E-06 1.91E-05 

0.2 0.654984602 0.654977145 0.654367593 6.17E-04 7.46E-06 6.81E-05 

0.3 0.518572754 0.518562529 0.517747628 8.25E-04 1.02E-05 1.24E-04 

0.4 0.402192028 0.402180054 0.401241892 9.50E-04 1.20E-05 1.64E-04 

0.5 0.30326533 0.303252787 0.302279968 9.85E-04 1.25E-05 1.72E-04 

0.6 0.219524654 0.219512766 0.218594693 9.30E-04 1.19E-05 1.46E-04 

0.7 0.148975591 0.148965506 0.148186139 7.89E-04 1.01E-05 9.70E-05 

0.8 0.089865793 0.089858479 0.089290229 5.76E-04 7.31E-06 4.49E-05 

0.9 0.040656966 0.040653124 0.040351558 3.05E-04 3.84E-06 9.44E-06 

1 0 0 0 0.00E-00 0.00E-00 0.00E-00 
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Fig. 2.  Graphically representation of Accurate solution, CNPS outcome, CPS outcome and their Absolute Errors for problem 3.1 at ℎ =
1

10
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Fig. 4.  Graphically representation of Accurate solution, CNPS outcome, CPS outcome and their Absolute Errors for problem 3.2 at ℎ =
1

10
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Fig. 6.  Graphically representation of Accurate solution, CNPS outcome, CPS outcome and their Absolute Errors for problem 3.3 at ℎ =
1

10
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Tab. 5.  Comparison of accurate, CNPS along with CPS for problem 3.3 at ℎ =
1

10
  

  

𝝕 Accurate solution CNPS solution |𝒆𝒓𝒓𝒐𝒓| on CNPS CPS solution |𝒆𝒓𝒓𝒐𝒓| on CPS [6] 

0 1 1 1 0.00E-00 0.00E-00 0.00E-00 

0.1 1.105170918 1.105171098 1.105120542 5.04E-05 1.80E-07 3.82E-06 

0.2 1.221402758 1.221403102 1.221310719 9.20E-05 3.43E-07 1.35E-05 

0.3 1.349858808 1.349859281 1.349734356 1.24E-04 4.73E-07 2.64E-05 

0.4 1.491824698 1.491825254 1.49167782 1.47E-04 5.56E-07 3.85E-05 

0.5 1.648721271 1.648721853 1.648562907 1.58E-04 5.82E-07 4.64E-05 

0.6 1.8221188 1.82211935 1.821961083 1.58E-04 5.50E-07 4.70E-05 

0.7 2.013752707 2.01375317 2.01360923 1.43E-04 4.62E-07 3.94E-05 

0.8 2.225540928 2.225541259 2.225427036 1.14E-04 3.31E-07 2.48E-05 

0.9 2.459603111 2.459603282 2.45953623 6.69E-05 1.70E-07 8.50E-06 

1 2.718281828 2.71828 2.71828 0.00E-00 0.00E-00 0.00E-00 

  

Tab. 6.  Comparison of accurate, CNPS along with CPS for problem 3.3 at ℎ =
1

5
  

  

𝝕 Accurate solution CNPS solution |𝒆𝒓𝒓𝒐𝒓| on CNPS CPS solution |𝒆𝒓𝒓𝒐𝒓| on CPS [6] 

0 1 1 0.00E-00 1 0.00E-00 0.00E-00 

0.2 1.221402758 1.221403377 6.19E-07 1.22103274 3.70E-04 5.42E-05 

0.4 1.491824698 1.491825707 1.01E-06 1.491234204 5.90E-04 1.53E-04 

0.6 1.8221188 1.822119714 9.13E-07 1.821484771 6.34E-04 1.95E-04 

0.8 2.225540928 2.225541357 4.28E-07 2.225083141 4.58E-04 1.04E-04 

1 2.718281828 2.71828 0.00E-00 2.71828 0.00E-00 0.00E-00 

4.  CONCLUSION 

This paper addresses a gap in the existing literature by focusing 
on high-order nonlinear BVPs, which are less commonly explored 
compared to lower-order problems. this paper propose novel nu-
merical strategies that involves non-polynomial and polynomial cu-
bic splines to solve the nonlinear seventh order BVPs. Non-polyno-
mial splines offer local control and are ideal for modeling intricate 
curves. In contrast, cubic polynomial splines excel in providing 
smooth interpolation. The choice between them depends on the 
problem’s demands for local control or smoothness. The study 
shows that both CPS and CNPS methods can effectively solve non-
linear seventh-order BVPs, providing accurate approximations com-
pared to exact solutions. For both methods, the domain [0,1] is di-
vided into sub-intervals with step sizes of ℎ = 1/10 and ℎ = 1/5. 

The employed methods are rigorously assessed through exper-
imentation on three distinct test problems. These benchmark prob-
lems encompass various nonlinear differential equations with differ-
ent combinations of exponential, trigonometric, and polynomial 
terms, providing a diverse set of challenges for assessing the per-
formance of the CPS and CNPS methods. The outcomes attained 
showcase an exceptional level of accuracy, extending up to 7 deci-
mal places. These commendable results are vividly depicted in both 
the tabulated data and accompanying graphs. Such a high degree 
of precision substantiates the dependability and efficiency of the 
proposed method. 

The CNPS method generally produces more accurate results 
than the CPS method. Smaller step sizes result in more accurate 
solutions for both methods, though at the cost of increased compu-
tational effort. For instance, with ℎ = 1/10, the errors in both 
methods decrease compared to ℎ = 1/5. Tab.1 shows that for 
Problem 3.1 with ℎ = 1/10, the CNPS method achieves maximum 

absolute errors as low as 1.22 × 10−7, while the CPS method has 

errors up to 5.83 × 10−5. Tab.2 for ℎ = 1/5 indicates that while 
both methods’ errors increase, CNPS still outperforms CPS in ac-
curacy. 

The graphical illustrations (Fig. 2, 4, 6) highlight the precision of 
both methods. CNPS shows smaller absolute errors compared to 
CPS, indicating better convergence to the exact solution. Figure 1 
visually confirms the superior accuracy of CNPS with lower absolute 
errors compared to CPS. Fig. 1, 3 and 5 shows the graphical com-
parison on CPS and CNPS with other spline [6].  

By comparing the CPS and CNPS methods, the research high-
lights the strengths and weaknesses of each approach, offering val-
uable insights for future applications. This is illustrated through var-
ious figures and numerical simulations presented in the results sec-
tion, demonstrating the close agreement between the numerical and 
exact solutions. This comparative analysis is particularly useful for 
researchers and practitioners seeking efficient numerical methods 
for similar problems. 
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